

LONG-TERM EFFECTS OF MINERAL FERTILIZATION ON BIOMASS PRODUCTIVITY AND AGRONOMIC FACTORS IN HIGH NATURE VALUE GRASSLANDS

Ioana GHEȚE and Ioan ROTAR

*Faculty of Agriculture. Department of Plant Crops. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manăstur street, 3-5, 400372, Romania.

* Corresponding author, e-mail: ioana.ghete@usamvcluj.ro

Abstract

High Nature Value (HNV) grasslands play a key role in maintaining biodiversity and ecosystem functionality in mountain regions. This study evaluates the long-term effects of mineral fertilization on the agronomic characteristics and biomass productivity of a semi-natural grassland in the Apuseni Mountains, after 17 consecutive years of annual NPK applications (0; 50N25P₂O₅25K₂O; 100N50P₂O₅50K₂O; 150N75P₂O₅75K₂O kg/ha). Biomass yield increases mainly through the expansion of two species with high competitive capacity: *Agrostis capillaris*, whose cover rises from 11% in the control to 64.6% under high fertilization, and *Trisetum flavescens*, which shows maximal development at moderate doses. Agronomic quality improves with fertilization, shifting from class V (medium) in the unfertilized sward to class VI (good) under the highest treatment, due to the installation of taller species with richer foliage. In contrast, grazing and trampling tolerance decrease progressively as mineral inputs intensify, reflecting the replacement of stress-tolerant species by taller, less resistant ones. Overall, the findings indicate that mineral fertilization enhances biomass production and forage quality but reduces structural complexity and tolerance of the sward to pastoral use. In the context of rising temperatures and decreasing precipitation in the study area, these trends underline the need for careful nutrient management to preserve the ecological stability and multifunctionality of HNV grasslands.

Keywords: HNV grasslands, mineral fertilization, biomass production, agronomic factors, forage quality, long-term experiment, Apuseni Mountains.

INTRODUCTION

In recent decades, Romania's mountainous areas have undergone profound transformations driven primarily by the restructuring of their traditional economic system. The drastic reduction of timber resources—the main source of income for local communities—has led to major changes in the way of life of mountain populations (Rotar et al. 2020; Păcurar et al. 2023). A representative example is the Apuseni Mountains, where logging and wood processing once

provided approximately 70% of household income, and the strong dependence of Mote communities on this resource has been documented by several authors (Auch et al., 2001; Rușdea et al. 2011; Gliga et al. 2013; Păcurar et al. 2019).

As forest resources have progressively diminished, local populations have increasingly shifted towards agriculture and livestock husbandry. This transition has directly influenced land use

patterns, landscape dynamics, floristic composition, and the phytodiversity of grasslands (Brinkmann et al. 2009; Rotar et al. 2010; Păcurar et al. 2023).

Within this context, the assessment and conservation of High Nature Value (HNV) grasslands have become a major national concern. Romanian specialists are developing management methods based on the use of indicator species, adjusted to local site conditions and the intensity of agro-pastoral practices (Vaida et al. 2017; Sângorzan et al. 2018; Gaga et al. 2022). At the European level, the use of indicator species to assess HNV grasslands has a long tradition, with numerous studies showing that agricultural intensification in Western Europe leads to biodiversity reduction, a trend revealed by shifts in floristic indicators. In Germany, for instance, the effectiveness of agri-environmental measures has been validated through the monitoring of indicator species (Wittig & Zacharias 2006; Balázsi et al. 2018; Milberg et al. 2020).

Climate change represents an additional threat to grassland ecosystems in the Carpathian Mountains, the most extensive mountain range in Central and Eastern Europe (Sângorzan et al. 2024). These ecosystems host valuable plant communities with high biodiversity and important indicator species (Vaida et al. 2021). Recent climatic trends, including rising temperatures and declining precipitation, influence

vegetation dynamics and the capacity of grasslands to maintain stable structures under increasing anthropogenic pressure.

Many researchers now recommend that Common Agricultural Policy measures across the European Community be evaluated based on outcomes rather than actions, and that lists of species indicative of management intensity be developed. In this context, research on HNV grasslands should be carried out through long-term experiments, as short-term studies may fail to capture or may distort real ecological processes. Authors emphasize that knowledge gained from long-term ecological fertilization experiments must be considered before applying additional nutrients to semi-natural grasslands (Păcurar et al. 2023).

Experiments assessing the effect of mineral fertilization on biodiversity are relatively rare, as mineral inputs applied in optimal quantities are considered, at European level, a viable solution for maintaining and even conserving grassland biodiversity in Romania. The wide diversity of HNV ecosystems in mountain regions has been created and maintained through traditional and sustainable agricultural practices, and altering this equilibrium may generate major changes in floristic composition and agronomic parameters of the vegetation cover.

In this context, the present study analyzes how mineral fertilization, applied continuously for 17 years, influences the floristic

composition, biomass productivity, and agronomic factors of a mountain grassland in the Apuseni Mountains, providing essential insights into the long-term evolution

MATERIAL AND METHOD

The long-term experiences with mineral fertilizers were studied. The mineral experiment consisted of 4 treatments in 4 replications (T1 control, T2 50N25P25K, T3 100N50P50K, T4 150N75P75K). Mineral fertilizers were applied annually in early spring, using the same type of complex fertilizer, namely NPK (nitrogen, phosphorus, potassium) 20:10:10. For the floristic analysis, data from long-term experiments established in Ghețari (Apuseni Mountains, Romania) were used, at an elevation of 1130 m, founded in 2001, using the random blocks method, will be used. The floristic studies were performed according to the Braun-Blanqué method modified by Păcurar and Rotar (2014). This paper presents data from three experimental years (2015, 2016, 2017), but highlights the cumulative effect of mineral inputs 17 years after the placement of the experiments.

Mineral fertilizers were applied annually in early spring, when the snow cover melted, usually around April 15-20. Mineral fertilization was performed on the same day in all experimental variants. The PC-ORD software, version 7 (www.pcord.com), was used to process the floristic data obtained in the experimental fields.

of phytocoenoses under current climatic and socio-economic transformations.

For processing, the data obtained were entered in the form of two matrices. The first matrix contained data on vegetation, while the second matrix contained the experimental variants. PC-ORD software (version 7) was used for vegetation classification and ordination, as well as for randomization tests.

In this paper, the ordering was performed in two dimensions because it provides a clear picture of the phenomenon. The ordering of the floristic surveys of the experimental data was performed using the Principal Coordinates Analysis (PCoA) method. This method is widely used in ordering statistics, even outside the fields of ecology and agronomy. It has been tested over time and has always been adjusted by specialists in statistical processing. (PECK, 2010; Păcurar și Rotar 2014).

Regarding the temperatures recorded at the Ghețari station over the last 17 years, the following aspects can be observed: the multi-year average was around 5.8°C, with a maximum value of 7.7°C recorded in 2012 and 2015 (Gliga et. al 2013), and a minimum value of 3.2°C recorded in 2005 (Apahidean et. al., 2005, Barbara et. al 2006); Table 2 also shows an upward trend in average annual temperatures, particularly between

2012 and 2017 (Brinkmann *et. al.*, 2009; Morea *et. al.*, 2014).

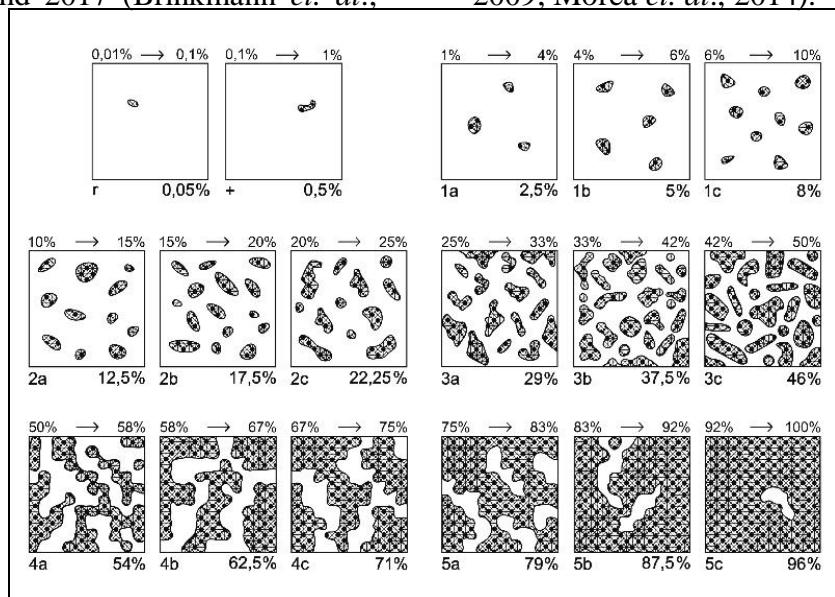


Figure 1. Scheme of appreciation of abundance-dominance by method Braun-Blanquet, using three sub-notes Pacuraru and Rotar, 2014)

Table 1.

Scale of appreciation of abundance-dominance Braun-Blanquet, completed Tüxen and Ellenberg (1937), modified with three sub-notes and three sub-ranges by Păcuraru and Rotar, (2014)

Nota	Coverage interaval (%)	Central value of class (%)	Sub-note	Sub-interval (%)	Central-adjusted value of sub-interval (%)
5	75 – 100	87.5	5c	92 – 100	96
			5b	83 – 92	87.5
			5a	75 – 83	79
4	50 – 75	62.5	4c	67 – 75	71
			4b	58 – 67	62.5
			4a	50 – 58	54
3	25 – 50	37.5	3c	42 – 50	46
			3b	33 – 42	37.5
			3a	25 – 33	29
2	10 – 25	17.5	2c	20 – 25	22.25
			2b	15 – 20	17.5
			2a	10 – 15	12.5
1	1 – 10	5	1c	6 – 10	8
			1b	4 – 6	5
			1a	1 – 4	2.5
+	0.1 – 1	0.5	-	-	0.5
r	0.01 – 0.1	0.05	-	-	0.05

Note: system Braun-Blanquet, completed by Tüxen and Ellenberg (1937), modified with three sub-notes and three sub-intervals (source Păcurar and Rotar, 2014)

Therefore, the context of climate change in the study area (Ghețari Plateau – Poiana Călineasa) has significant effects on

the floristic diversity of oligotrophic grasslands in the Apuseni Mountains.

Table 2

The monthly average temperatures recorded at Ghețari weatherstation (2015-2017)

Year	Months												Average
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
2015	0,8	2	4,7	3,8	10,8	13,5	16,5	16,5	12,7	7,7	3,4	-0,2	7,7
2016	-5,4	0,1	1	8	8,7	14,8	16	15,3	10,9	4,6	0,4	-5,4	5,7
2017	-1,8	6	8,3	6,4	10	14,6	15,5	15,3	10,7	7,9	0,6	-3,2	7,5
Mean	-4,5	-2,7	0,2	5,3	10,5	14,5	15,9	15,4	11,3	6,0	1,4	-3,1	5,8

Regarding the average annual precipitation values recorded at the Ghețari weather station, it was found that the multi-year average (over 17 years) was 1042.1 mm, with the maximum recorded in 2001 (1553 mm; Păcurar et. al., 2004) and the minimum was recorded in 2012 (687 mm; Păcurar et. al., 2017), which was considered the driest year in our study area. Comparing the last 5 years (2012-

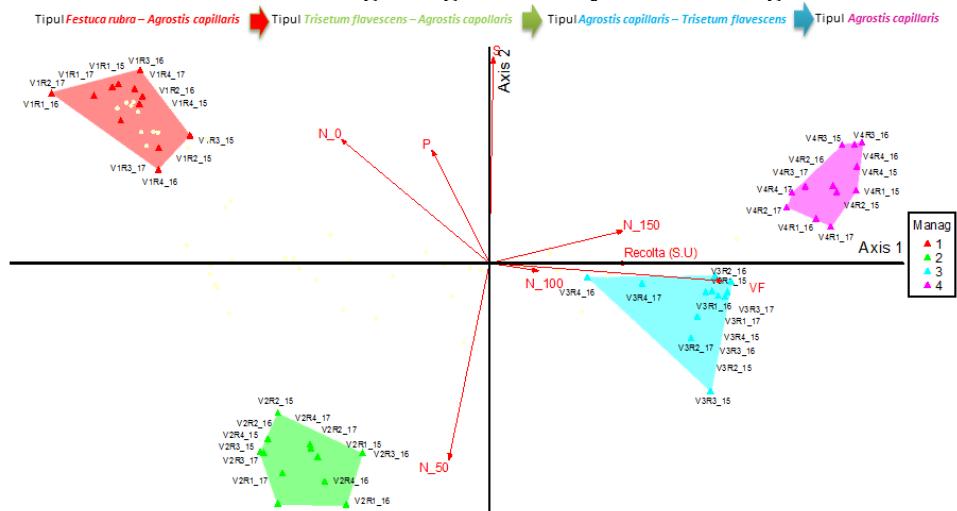
2017; Rotar et. al., 2020) with the multi-year average in terms of rainfall, it is easy to see that the downward trend in precipitation values is complemented by an increase in temperature values, thus foreshadowing a constantly changing climate, which brings with it new challenges in terms of adapting grassland management in the Apuseni Mountains.

Table 3

The monthly average precipitations recorded at Ghețari weatherstation (2015-2017)

Year	Months												Average
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
2015	32,6	14,2	23,6	48,6	69,4	78,2	33,8	95	124	38,8	98,4	49,8	706,4
2016	120	111, 4	79,4	108, 4	67	165,4	58,8	49,4	56	86,6	127	0,2	1030
2017	112	0	86	11,4	116,6	95	37	35	88	100	98	36,2	815,2
Media	67,2	55,9	81,8	77,2	102,4	100,3	137,3	98,4	92,6	86,6	86,5	55,8	1042,1

RESULTS AND DISCUSSIONS


The influence of mineral fertilization on agronomic factors

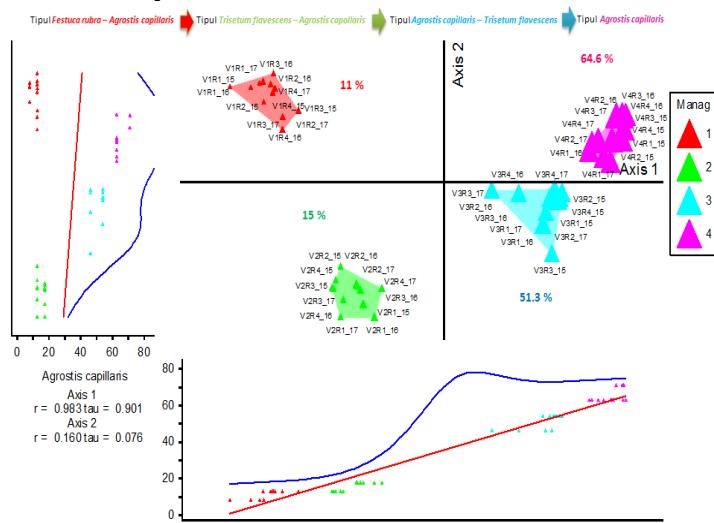
The agronomic factors that correlate with the ordering axes are

represented by species tolerance to grazing, trampling, forage value,

and yield (Fig. 2). Species preferences in terms of grazing

tolerance are inversely proportional to yield and forage value.

1 – V1 (CONTROL); 2 – V2 (50N25P25K); 3 – V3 (100N50P50K); 4 – V4 (150N75P75K); VF – Fooder value; P – grazing; S - crushed


Fig. 2 The influence of mineral fertilization on the agronomic factors

The biomass harvest developed mainly on the basis of two species: *Agrostis capillaris* (Fig. 3) and *Trisetum flavescens* (Fig. 4). The *Agrostis capillaris* species is strongly influenced by the treatments applied and has the highest proportion in the 100N50P50K and 150N75P75K treatments ($r = 0.983$; Fig. 3). The species increases its share from 11% coverage (control) to 64.6% of the vegetation cover (150N75P75K). Our results are also confirmed by Motcă in 1975, when mineral fertilization of an *Agrostis capillaris* – *Festuca rubra* meadow in the Făgăraș Depression led to a strong establishment of the *Agrostis capillaris* species, which became dominant. Dincă in 1984 shows that mineral fertilization led to an increase in the size of the *Agrostis capillaris* species and lush growth

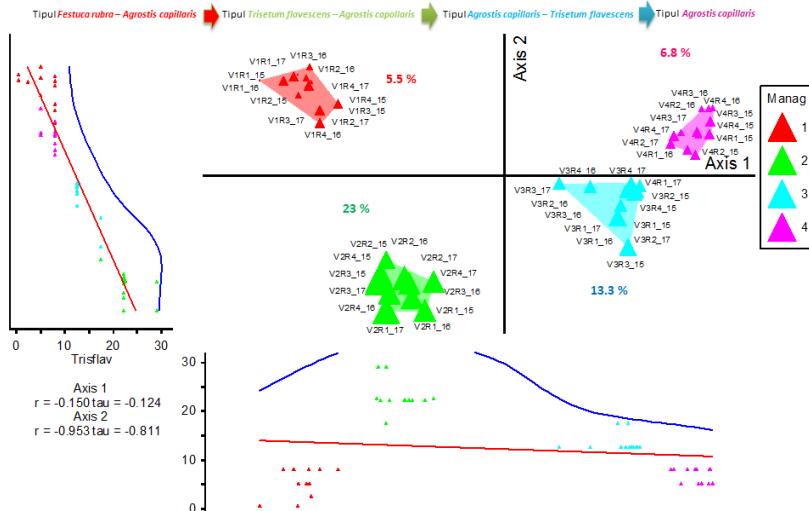
with rich foliage. Our studies are also confirmed by current specialist literature. Thus, the analysis of the effects of mineral fertilization on the floristic composition highlights a clear change in the structure of the vegetation cover with the intensification of nutrient input. The results obtained in the long-term experiment at Ghețari confirm the trends reported in recent literature, according to which *Agrostis capillaris* is one of the most sensitive and reliable indicator species of intense mineral fertilization (Gârda et. al., 2009; Ghețe et. al., 2025). The ecological trend of this species, also identified in other studies, confirms that *Agrostis capillaris* is adapted to nitrophilic conditions, responding favorably to increased nitrogen availability and effectively competing with other species in

ecosystems with high nutrient inputs. By integrating these results, the experiment demonstrates that long-term mineral fertilization causes a functional redistribution of species in the plant community: *Agrostis capillaris* emerges as an indicator species of high fertilization intensity, while

Trisetum flavescens (Gârda et. al., 2010) and other mesotrophic species remain characteristic of low-input variants. This differentiation is essential for understanding the adaptation mechanisms of mountain grasslands to different management regimes.

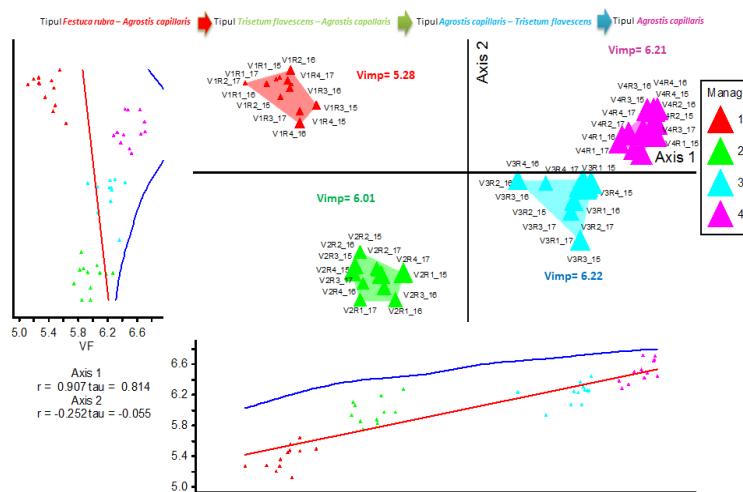
1 – V1 (control); 2 – V2 (50N25P25K); 3 – V3 (100N50P50K); 4 – V4 (150N75P75K); r – correlation coefficient

Fig. 3 The influence of *Agrostis capillaris* species on dry matter


The species *Trisetum flavescens* is influenced by the treatments applied and has the highest proportion in the treatments with 50N25P25K and 100N50P50K (Fig. 4). The species increases its share from 5.5% (control) to 23% in the 50N25P25K treatment, 13.3% in the 100N50P50K treatment, after which it records a decrease in share (6.8%) in the 150N75P75K fertilized variant. Our results are also confirmed by SCHNEIDER in 2011, when he identified the species *Trisetum flavescens* on high-yield grasslands. Feed value is a complex concept that takes into account the

following aspects (Vîntu, 2004; Rotar and Carlier, 2010): chemical composition; degree of consumability; palatability (acceptance by animals); degree of toxicity; percentage of leaves and stems; porosity of plant organs and their type; digestibility.

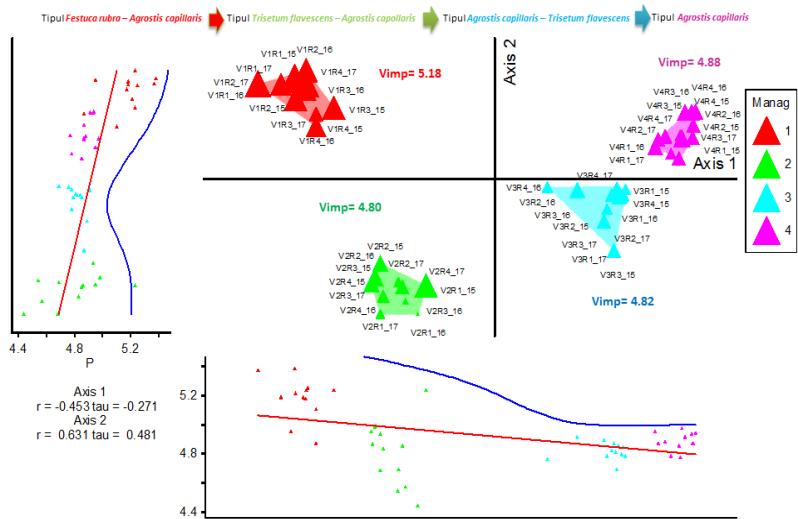
The application of mineral fertilization led to an improvement in forage quality. The phytocoenosis of the control (*Festuca rubra* – *Agrostis capillaris*) falls into class V (Fig. 5), the average category, being a meadow dominated by species with average forage value, supporting 0.81–1.00 UVM/ha, and


following mineral fertilization, it falls into class VI quality, good category (V4 – 150N75P75K; *Agrostis capillaris* type), where species with good forage value predominate, supporting 1.01 – 1.20

UVM/ha. This increase in quality can be explained by the installation of new types of pasture as a result of the increased intensity of the system.

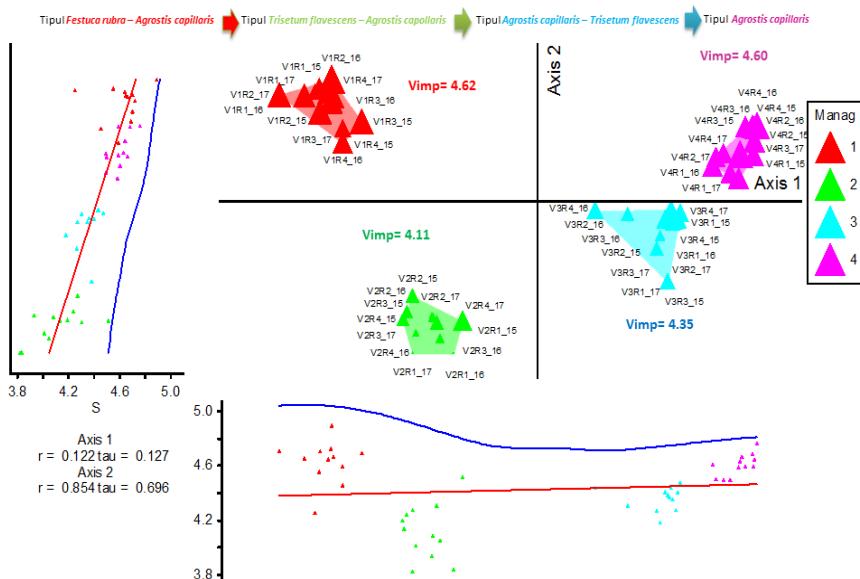
1 – V1 (control); 2 – V2 (50N25P25K); 3 – V3 (100N50P50K); 4 – V4 (150N75P75K); r – correlation coefficient

Fig. 4 The influence of *Trisetum flavescens* species on dry matter



1 – V1 (control); 2 – V2 (50N25P25K); 3 – V3 (100N50P50K); 4 – V4 (150N75P75K); r – correlation coefficient; VF – feed value

Fig. 5 Influence of mineral fertilization on fodder value


The tolerance of phytocenosis to grazing is inversely proportional to mineral fertilization (Fig. 6). The representative phytocenosis of the control is moderately tolerant to grazing ($P=5.18$) and is reduced to moderately tolerant to treatment with 150N75P75K ($P=4.88$). This

situation can be explained by the new species (*Agrostis capillaris*) that have been introduced, which are medium to tall in height and have a lower tolerance to grazing compared to the species in the control phytocenosis (*Festuca rubra*).

1 – V1 (control); 2 – V2 (50N25P25K); 3 – V3 (100N50P50K); 4 – V4 (150N75P75K); r – correlation coefficient; P - grazing

Fig. 6 Influence of mineral fertilization on the tolerance of phytocenoses in grazing

1 – V1 (control); **2** – V2 (50N25P25K); **3** – V3 (100N50P50K); **4** – V4 (150N75P75K); r – correlation coefficient; S – crushed

Fig. 7 Influence of mineral fertilization on the tolerance of phytocenoses in crushed

Tolerance to crushing is inversely proportional to mineral fertilization, with a decrease in the tolerance to crushing of phytocenoses (Fig. 7). While in the control sample the tolerance to crushing is 4.62, following mineral fertilization and the installation of new types of grassland, it is reduced

to 4.11 (V2 – *Trisetum flavescens* – *Agrostis capillaris* type), 4.35 in the treatment with 100N50P50K (*Agrostis capillaris* - *Trisetum flavescens* type), there is no change in the agronomic category, all being moderately tolerant to crushing.

CONCLUSIONS

The application of mineral fertilizers increases the fodder value of the vegetation cover, due to the establishment of new types of pasture with superior qualities;

Mineral fertilization causes a slight decrease in the grazing tolerance of phytocenoses;

Overlaying the results regarding the evolution of agronomic, ecological, and natural factors over those specific to vegetation changes leads to a clearer picture of the behavior of newly established pasture types as a result of fertilizer application.

REFERENCES

1. Apahidean, A. S., Apahidean, M., & Pacurar, F. (2004). Experimental results on the possibilities of vegetable growing in the area of western Carpathian Mountains from Romania. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 32, 30.
2. Apahidean, A. S., Apahidean, M., & Păcurar, F. (2005). Experimental results on the possibilities of vegetable growing in the area of Western Carpathian Mountains from Romania.
3. Auch E., F. Păcurar, A. Goia, 2001, Economic and Technological Aspects of the Agricultural Systems in Țara moților (Ghețar, Gârda de Sus), în *Buletinul USAMV, Seria Agricultura*, vol. 55-56: 215.
4. Balázs, Á., Pacurar, F., Mihu-Pintilie, A., & Konold, W. (2018). How do public institutions on nature conservation and agriculture contribute to the conservation of species-rich hay meadows? *International Journal of Conservation Science*, 9, 549–564.
5. Balázs, Á., Păcurar, F., Rotar, I., & Vidican, R. (2016). Alternative management for oligotrophic grassland conservation in the Apuseni Mountains.

6. Barbara, M., Rotar, I., & Pacurar, F. (2006). Biodiversity and conservation of medicinal plants: A case study in the Apuseni Mountains in Romania. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture*, 62.
7. Barbara, M., Wolfgang, K., Susanne, S., Ioan, R., & Florin, P. (2006). Conservation of eastern European medicinal plants: *Arnica montana* in Romania.
8. Brinkmann, K., Pacurar, F., & Reif, A. (2009). Secondary succession and fluctuations in meadows of the Apuseni Mountains (Transylvania, Romania) under different fertilisation regimes. *Transylvanian Review of Systematical and Ecological Research*, (7), 41.
9. Brinkmann, K., Păcurar, F., Rotar, I., Rușdea, E., Auch, E., & Reif, A. (2009). The grasslands of the Apuseni Mountains, Romania, în *Grasslands in Europe of high nature value*, Print ISBN 978 90 5011 31 68.
10. Dale, L. M., Thewis, A., Boudry, C., Rotar, I., Păcurar, F. S., Abbas, O., Dardenne, P., Baeten, V., Pfister, J., & Fernández Pierna, J. A. (2013). Discrimination of grassland species and their classification in botanical families by laboratory scale NIR hyperspectral imaging: Preliminary results. *Talanta*, 116, 149–154.
11. Dale, L., Thewis, A., Rotar, I., Boudry, C., Păcurar, F. S., Lecler, B., Agneessens, R., Dardenne, P., & Baeten, V. (2013). Fertilization effects on the chemical composition and in vitro organic matter digestibility of semi-natural meadows as predicted by NIR spectrometry. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 41, 58–64.
12. Gaga, I., Pacurar, F., Vaida, I., Plesa, A., & Rotar, I. (2022). Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. *Plants*, 11(15), 1975.
13. Gârda, N. T., Păcurar, F., Rotar, I., & Bogdan, A. (2010). The floristic and stational characterisation of the grassland subtype *Agrostis capillaris* + *Trisetum flavescens* from Apuseni Mountains, Romania. *Research Journal of Agricultural Science*, 42, 454–457.
14. Gaga, I., Rotar, I., Păcurar, F., Vaida, I., & Pleșa, A. (2022). The influence of organic and mineral fertilization on the production of *Festuca rupicola* grasslands in the Transylvanian Plain. *Rom. J. Grassl. Forage Crops*, 25, 25–30.
15. Gârda, N., Rotar, I., Păcurar, F., & Vidican, R. (2009). The role of pastoral landscape in defining the mountainous space in Apuseni Mountains. *Lucrări Științifice vol. 52. Seria Agronomie*.
16. Ghețe, I., Rotar, I., Pleșa, A., Ghețe, A., Șerban, C., & Stoian, V. (2025). Effect of mineral fertilization on vegetation of HNV pastures in the Apuseni Mountains (Romania). *Plants*, 14, 3564.

17. Gliga, A., Rotar, I., Vidican, R., Păcurar, F., Balazsi, A., & Deak, D. (2013). Evolution of semi-natural grasslands in Europe (bibliographical paper). (2013): 17-22.

18. Mălinas, A., Rotar, I., Vidican, R., Iuga, V., Păcurar, F., Mălinas, C., & Moldovan, C. (2020). Designing a sustainable temporary grassland system by monitoring nitrogen use efficiency. *Agronomy*, 10, 149.

19. Marușca, T., Păcurar, F. S., Scrob, N., Vaida, I., Nicola, N., Taulescu, E., & Lukács, Z. (2021). Contributions to the assessment of grasslands productivity of the apuseni natural park (rosci 0002). *Romanian Journal of Grassland and Forage Crops*, 24, 23.

20. Marușca, T., Păcurar, F. S., Taulescu, E., Vaida, I., Nicola, N., Scrob, N., & Dragoș, M. M. (2022). Indicative species for the agrochemical properties of mountain grasslands soil from the apuseni natural park (rosci 0002). *Romanian Journal of Grasslands and Forage Crops*, 25(22), 31.

21. Marușca, T., Păcurar, F., Memedemin, D., Oprea, A., Vaida, I., Taulescu, E., & Nicola, N. (2022). Ecological, Agronomic and Anthropogenic Characterization of the Habitat 62C0* Ponto-Sarmatian Steppes in the North of Dobrogea (Romania). *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture*, 79(2), 42-53.

22. Michler, B., Rotar, I., Pacurar, F., & Stoie, A. (2005). *Arnica montana*, an endangered species and a traditional medicinal plant: the biodiversity and productivity of its typical grasslands habitats. *Grassland Science in Europe*, 10, 336-339.

23. Milberg, P., Bergman, K. O., Glimskär, A., Nilsson, S., & Tälle, M. (2020). Site factors are more important than management for indicator species in semi-natural grasslands in southern Sweden. *Plant Ecology*, 221(7), 577-594.

24. Morea, A., Rotar, I., & Păcurar, F. (2008). Drying possibilities of *Arnica montana* flower heads using local resources.

25. Morea, A., Rotar, I., Vidican, R., & Păcurar, F. (2013). The influence of different types of management upon the floristic structure of grassland systems, with special attention on *Arnica montana* L. *Bulletin UASVM Agriculture*, 70(1).

26. Morea, A., Rotar, I., Vidican, R., Păcurar, F., & Stoian, V. (2014). Changes in vegetation in a *Festuca rubra* meadow in Apuseni Mountains due to organic fertilization.

27. Păcurar, F. (2005). *Cercetări privind dezvoltarea durabilă a satului Ghețari, comuna Gârda, prin îmbunătățirea pajiștilor naturale și a unor culturi agricole* (Teză de doctorat). USAMV Cluj-Napoca.

28. Păcurar, F. (2020). Specii indicator pentru evaluarea și elaborarea managementului sistemelor de pajiști cu înaltă valoare naturală-HNV. Casa Cărții de Știință.

29. Păcurar, F. S., Rotar, I., & Vaida, I. (2019). The effects of wild boar disturbances on the agronomical value of semi-natural grasslands. *Romanian J. Grassl. Forage Crops*, 20, 27.

30. Păcurar, F. S., Rotar, I., Michler, B., & Vidican, R. (2008). Traditional management of *Arnica montana* grasslands. *Grassland Science in Europe*, 13.

31. Păcurar, F. S., Rotar, I., Vaida, I., Gaga, I., & Costantea, D. (2020). Ecological and agronomical value of *Agrostis capillaris-Festuca rupicola* grasslands. *Romanian Journal of Grasslands and Forage Crops*, 22, 55.

32. Păcurar, F., & Rotar, I. (2004). Maintaining biodiversity and increasing the production of dry matter on mountain meadows.

33. Pacurar, F., and I. Rotar. "The evolution of biodiversity on *Festuca rubra* meadow following to some specifical technologies inputs to sustainable agriculture." (2006): 124-127.

34. Păcurar, F., Balazsi, Á., Rotar, I., Vaida, I., Reif, A., Vidican, R., & Sângeorzan, D. D. (2020). Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape.

35. Păcurar, F., Marușca, T., Scrob, N., Vaida, I., & Nicola, N. (2023). The ecological and agronomic study of some grasslands phytocenoses from the site Natura 2000 ROSCI0002 Apuseni. *Rom. J. Grassl. Forage Crops*, 28, 31-54.

36. Păcurar, F., Morea, A., & Gârda, N. (2008). Productivity and biodiversity evolution of *Festuca rubra* grasslands during a seven-year period. *Bulletin UASVM Agriculture*, 65, 5.

37. Păcurar, F., Reif, A., & Rusdea, E. (2023). Conservation of oligotrophic grassland of high nature value (HNV) through sustainable use of *Arnica montana* in the Apuseni Mountains, Romania. In *Medicinal Agroecology*. Taylor & Francis.

38. Păcurar, F., Rotar, I., Balazsi, A., & Vidican, R. (2014). Influence of long-term organic and mineral fertilization on *Festuca rubra* L. grassland. *The Future of European Grasslands*, 294.

39. Păcurar, F., Rotar, I., Bogdan, A. D., Vidican, R. M., & Dale, L. (2012). The influence of mineral and organic long-term fertilization upon the floristic composition of *Festuca rubra* L.-*Agrostis capillaris* L. grassland in Apuseni Mountains, Romania. *Journal of Food, Agriculture & Environment*, 10(1).

40. Pacurar, F., Rotar, I., Gârda, N., & Morea, A. (2009). The Management of Oligotrophic Grasslands and the Approach of New Improvement Methods. *Transylvanian Review of Systematical and Ecological Research*, (7), 59.

41. Păcurar, F., Rotar, I., Gârda, N., & Morea, A. (2010). The organic-mineral fertilization of a *Festuca rubra* L. grassland for eight years.

42. Păcurar, F., Rotar, I., Gârda, N., & Vidican, R. (2009). New directions in the study of oligotrophic grasslands in the mountain area. *Lucrări Științifice – Seria Agronomie* (Iași).

43. Păcurar, F., Rotar, I., Gârda, N., & Vidican, R. (2009). New possibilities for sustainable use of oligotrophic grasslands in Apuseni Mountains. *Bulletin UASVM Agriculture*, 66.

44. Păcurar, F., Rotar, I., Pleșa, A., Balázsi, Á., & Vidican, R. (2015). Study of the floristic composition of certain secondary grasslands in different successional stages as a result of abandonment. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture*, 72, doi:10.15835/buasvmcn-agr:11165.

45. Păcurar, F., Rotar, I., Vaida, I., Vidican, R., & Mălinăș, A. (2017). Indicator species of fertilization intensity in mountain grasslands. *Grassl. Resour. Extensive Farming Syst. Marg. Lands Major Driv. Future Scenar*, 22, 378.

46. Păcurar, F., Rotar, I., Vidican, R., & Gârda, N. (2007). Organic fertilization and biodiversity of *Festuca rubra* grasslands. In *Permanent and Temporary Grassland: Plant, Environment and Economy* (EGF Proceedings, Vol. 12, pp. 363–366).

47. Păcurar, F., Rotar, I., Vidican, R., & Vaida, I. (2023). The ecological and agronomic study of some grasslands phytocenoses from the Site Natura 2000 Rosci 0238 Suatu-Cojocna-Crairît. *Rom. J. Grassl. Forage Crops*, 27, 9–28.

48. Păcurar, F., Rotar, I., Vidican, R., Vaida, I., Pleșa, A., Stoian, V., Tomoș, L., & Ghețe, A. (2025). Density-based assessment of *Adonis vernalis* abundance in native habitats. *Scientific Papers Series A. Agronomy*, 68(1).

49. Reif, A., Auch, E., Bühler, J., Brinkmann, K., Goia, A. I., Pacurar, F., & Rusdea, E. (2005). Landschaft und landnutzung im Apusenigebirge Rumäniens. *Carinthia II*, 195(115), 161–201.

50. Reif, A., Rusdea, E., Păcurar, F., Rotar, I., Brinkmann, K., Auch, E., & Bühler, J. (2008). A traditional cultural landscape in transformation. *Mountain Research and Development*, 28(1), 18–22.

51. Rotar, I., Gârda, N., Păcurar, F., & Vidican, R. (2009). Study of mountain landscape elements in Apuseni Mountains (Gârda de Sus Community).

52. Rotar, I., Huygens, D., Vidican, R., Carlier, L., Pacurar, F., & Malinas, A. (2013). The Effect of Low-input Grassland Management on *Arnica montana* L. Species in Apuseni Mountains, Romania. *ProEnvironment Promediu*, 6(13).

53. Rotar, I., Păcurar, F., & Vidican, R. (2006). The influence of organic fertilisers on the biodiversity of a *Festuca rubra* meadow. *Grassland Productivity*.

54. Rotar, I., Păcurar, F., Balázsi, Á., Vidican, R., & Mălinăș, A. (2014). Effects of low-input treatments on *Agrostis capillaris* L.–*Festuca rubra* L. grasslands. In *The Future of European Grasslands* (EGF Proceedings, 17th Meeting, Ghent).

55. Rotar, I., Păcurar, F., Balázsi, Á., Vidican, R., & Mălinăș, A. (2013). The influence of limestone upon the vegetation of *Festuca rubra*–*Agrostis capillaris* semi-natural grassland type in the mountain regions and on dry matter yield. *Romanian Journal of Grasslands and Forage Crops*, 15, 31–36.

56.Rotar, I., Păcurar, F., Stoie, A., Gârda, N., & Dale, L. M. (2010). The evolution of *Arnica montana* L. grasslands depending on the performed management (Apuseni Mountains, Romania).

57.Rotar, I., Pacurar, F., Vidican, R., & Sima, N. (2003). Effects of manure/sawdust fertilisation on *Festuca rubra* type meadows at Ghetari (Apuseni Mountains).

58.Rotar, I., Păcurar, F., Vidican, R., & Sima, N. (2005, November). Impact of the agricultural use on the biodiversity of a *Festuca rubra* meadow. In XX International Grassland Conference: Offered papers (pp. 616-616). Wageningen Academic.

59.Rotar, I., Vaida, I., & Păcurar, F. (2020). Species with indicative values for the management of the mountain grasslands. Romanian Agricultural Research, (37).

60.Rotar, I., Vidican, R., Păcurar, F., Mălinăs, A., & Gliga, A. (2013). Research on the behaviour of *Medicago sativa* and *Dactylis glomerata* simple mixture in Odorheiu Secuiesc basin. Romanian Journal of Grassland and Forage Crops, (7), 41-49.

61.Rușdea, E., Reif, A., Höchtl, F., Păcurar, F., Rotar, I., Stoie, A., & Aronsson, M. (2011). Grassland vegetation and management-on the interface between science and education. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Agriculture, 68(1).

62.Rotar, I., Păcurar, F., Vaida, I., Nicola, N., & Pleșa, A. (2020). The Effect of Mulching on a Grasslands in the Apuseni Mountains. *Rom. J. Grassl. Forage Crops*, 25, 1128-1135.

63.Samuil, C., Nazare, A. I., Sîrbu, C., Grigoraș, B., & Vîntu, V. (2025). The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland. Plants, 14(21), 3397.

64.Samuil, C., Vintu, V., Popovici, C. I., & Stavarache, M. (2014). Influence of fertilization on the biodiversity of *Festuca rubra* L. and *Agrostis capillaris* L. grassland. The Future of European Grasslands, 302.

65.Sângeorzan, D. D., Păcurar, F., Reif, A., Weinacker, H., Rușdea, E., Vaida, I., & Rotar, I. (2024). Detection and quantification of *arnica montana* l. inflorescences in grassland ecosystems using convolutional neural networks and drone-based remote sensing. *Remote Sensing*, 16(11), 2012.

66.Sângeorzan, D., Rotar, I., Păcurar, F., Vaida, I., Suteu, A., & Deac, V. (2018). The definition of oligotrophic grasslands. *Rom. J. Grassl. Forage Crops*, 2018, 17.

67.Sângeorzan, D. D., Rotar, I., Vidican, R., Păcurar, F., & Ranta, O. (2018). Romania's diet footprints: minimum arable land and ecological footprint of consumption, from 1961 to.

68.Sima, N., & Păcurar, F. (2002). Quality of forage obtained from a mountain pasture as influenced by harvesting phenophase and management.

69. Sima, N., Rotar, I., Vidican, R., Păcurar, F., & Rusu, M. (2005). The effect of some technological inputs on canopy sward biodiversity in a *Festuca rubra* mountain pasture.

70. Stoie, A., Păcurar, F., & Rotar, I. (2007). Studies regarding the *Arnica montana* meadows from the central part of the Apuseni Mountains. Research Journal of Agricultural Science, 39(1), 265-270.

71. Vaida, I., Păcurar, F., Rotar, I., Tomoș, L., & Stoian, V. (2021). Changes in diversity due to long-term management in a high natural value grassland. Plants, 10(4), 739.

72. Vaida, I., Rotar, I., & Pacuraru, F. (2017). The Cumulative Effect of Manure on a *Festuca Rubra* Grasslands for 15 Years. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Agriculture, 74(2).

73. Vârban, R., Vârban, D. I., Mihăiescu, T., & Păcurar, F. (2014). Research on the optimisation of *Arnica montana* L seedling production.

74. Vintu, V., Chidovet, S., Samuil, C., & Stavarache, M. (2014). The effect of organic fertilization on *Agrostis capillaris* L. and *Festuca rubra* L. grasslands from the Romanian Eastern Carpathians. The Future of European Grasslands, 306.

75. Vîntu, V., Zaiț Grapan, T., Samuil, C., & Nazare, A. I. (2024). The Influence of Competition Between *Festuca arundinacea* Schreb. and *Trifolium pratense* L., Grown in Simple Mixtures, on the Quality of the Fodder. Agronomy, 14(12), 2934.

76. Vîntu, V., Samuil, C., Stavarache, M., & Nazarie, A. (2017). Influence of management on *Festuca valesiaca* grasslands from Romania's forest steppe.

77. Wittig, B., & Zacharias, D. (2006). An indicator species approach for result-orientated subsidies of ecological services in grasslands—A study in Northwestern Germany. Biological Conservation, 133(2), 186-197.