FORAGE PRODUCTIVITY OF SOME SMOOTH BROMEGRASS (Bromus inermis Levss.) CLONES

Elena-Manuela (BĂDRĂGAN) VACARCIUC*, Ana-Maria DUDĂU, Elena STAVARACHE, Mihai STAVARACHE

Research and Development Station for Meadows Vaslui, Romania *Corresponding author e-mail: vacarciucelenamanuela@yahoo.ro

Abstract

The aim of the research was to determine the feed production potential of some smooth brome clones (Bromus inermis Leyss.) in the silvostepa area. The research was conducted during the period 2022-2024, at the Research and Development Station for Meadows (RDSM), Vaslui ($46^{\circ}40' - 36^{\circ}10'$ north latitude and $27^{\circ}44' - 20^{\circ}40'$ east longitude). 25 Smooth brome sources were used as initial material in the research. The experiment was conducted as a completely randomized block design in three repetitions. In this research, the production of dry matter of this species in the years 17, 18, and 19 vegetation, respectively, under the conditions of pedoclimation of the area of experimentation. The results showed that differences of statistical significance were obtained between the variants taken in the study, in the three years taken in the study. The best-performing variants were the $V_{8\ BICL8}$ variants in the 17th year of vegetation and the $V_{11\ BICL11}$ in the 18th and 19th years. These high-yielding clones can be used as parents in polycross to develop synthetic varieties.

Keywords: grassland, pasture, meadow, green mass, perennial, production.

INTRODUCTION

Maintaining the productive potential of temporary grasslands at the highest level can be achieved only if they are used in their composition species with productive potential, valuable species, application of fertilizers and their rational use (DEAK et al., 2009; HANCOCK, 2011). The smooth brome is adapted to colder climates, resistant to drought and extreme temperatures (UNDERSANDER et al., 1996; KOSTOPOLULU and KARATASSIOU, 2016). Thanks to the highly developed root system, the unassisted obsiga has high resistance to extreme temperatures

and drought (TURK *et al.*, 2015). The technology of growing the seed batches of fodder species is different from the technology of fodder production, with a tendency to improve the morphological peculiarities of seed production and seed quality indices (ENE and MOCANU, 2016; SAMUIL *et al.*, 2012; VACARCIUC *et al.*, 2023).

Bromus inermis is an important species due to its high drought tolerance and ability to adapt to new environmental conditions (RAAWE, 2004).

Smooth brome is characterized by a unique

morphology of the aerial part. Vegetative shoots are predominant and similar to generative shoots; they are formed from a high percentage of leaves, which contributes to high feed production as well as high quality of the resulting feed (KOZŁOWSKI *et al.*,

1992; MACKIEWICZ- WALEC *et al.* 2024). Understanding how plants adapt to drought is crucial for predicting the impact of climate change on grasslands composition and diversity (KROEGER and OTFINOWSKI, 2024).

MATERIAL AND METHOD

The purpose and objectives of the research carried out at the Research and Development Station Vaslui Meadows were represented the bv forage productivity of smooth some bromegrass (Bromus inermis Leyss.) clones. The research was carried out during the period 20222024, within the Research and Development Station for Meadows (RDSM), Vaslui (46°40'-36°10' north latitude and 27°44'-20°40' east longitude). The experience was established in 2006, it consists of 25 variants (individual plants), in 4 repetitions, each variant having a length of 6 m and a width of 1 m.

100 200 180 160 **ව 60** 120 100 80 30 10 20 2021-2022 agricultural year 2022-2023 agricultural year -Average air temperatures (°C) -Monthly precipitation amount (mm)

(green - optimal period; orange - water deficit period)

Figure 1. 2021-2024 Agricultural period climadiagram

In the three years studied, only one cut was performed per year, the second cut being only one of cleaning. The time of harvesting the plants was when over 50% of

the plants had flowered. Each variant was harvested and weighed, representing the amount of green mass (G.M.) A sample of 200 g G.M., dried at 65°C for 8 hours,

then weighed. The climatic conditions of the experimentation period, namely 2022-2024. In the agricultural period 2022-2023, there were two dry years with recorded being half ofrainfall multiannual average. During the period from April to September, there was a precipitation deficit every month. The agricultural year

2023-2024 was marked by high rainfall. Although the rainfall was above the multiannual average, there were also periods of water and uneven distribution stress results (figure 1). The statistically interpreted by analyzing variance and calculating significant differences (LSD).

RESULTS AND DISCUSSIONS

Productivity data are shown in Tables 1 and 2.

The production yield obtained differences of statistical significance in year 17 of

vegetation, 2022 (table 1), values ranging from 3035 kg $^{\bullet}$ ha $^{-1}$ to variant V_{15 B2CL3} and 4897 kg $^{\bullet}$ ha $^{-1}$ to variant V_{8 B1CL8}, with 1477 kg $^{\bullet}$ ha $^{-1}$ more than the blank variant.

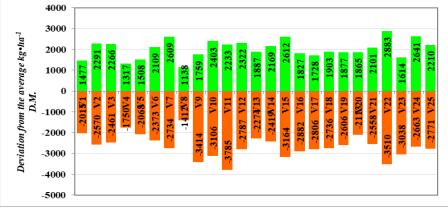
Plant production at first cut in the 17, 18, and 19 years of vegetation at *Bromus inermis* Leyss.

Variant	Production kg•ha ⁻¹ D.M.			
	Year 17 (2022)	Year 18 (2023)	Year 19 (2024)	
V _{1 B1CL1}	3443	6935 000	5997 °°°	
V ₂ B1CL2	3555	8417	6405	
V ₃ B1CL3	4219 ***	8946	6874	
V4 B1CL4	4557 ***	7624 °°°	6741	
V ₅ B1CL5	3982 ***	7558 000	6611	
$ m V_{6~B1CL6}$	3741 **	8222	6378	
$ m V_{7~B1CL7}$	4257 ***	9600 ***	7116 *	
V ₈ B1CL8	4897 ***	7447 °°°	6583	
V9 B1CL9	3823 ***	8893	8996 ***	
V ₁₀ B ₁ CL ₁₀	3595	9104 *	7404 ***	
V ₁₁ B1CL11	4285 ***	10303 ***	9622 ***	
V ₁₂ Olga control	3420 ^{C.}	8529 ^{C.}	6673 ^{C.}	
V ₁₃ B ₂ CL ₁	3392	7553 000	6052 °°	
V ₁₄ B ₂ CL ₂	3541	8130	6210 °	
V ₁₅ B ₂ CL ₃	3035 ⁰⁰⁰	8811	6750	
V _{16 B2CL4}	3700 *	8409	7637 ***	
V ₁₇ B ₂ CL ₅	3245	7778 00	7129 *	
V ₁₈ B ₂ CL ₆	3710 **	8349	7280 **	
V19 B2CL7	3272	7755 °°	6607	
V _{20 B2CL8}	3675 *	7653 °°°	6036 °°°	
V ₂₁ B ₂ CL ₉	3281	7940°	6298 °	
V22 Doina	3163 °	9556 ***	7300 **	

V23 Doin	a	3156°	7807 °°	7617 ***
V _{24 Doin}	1	3792 ***	9096 *	6475
V ₂₅ Doin	a	3929 ***	8910	7260 **
LSD	0.5%	213.9	461.6	364.8
	0.1%		615.5	486.5
	0.01%	371.5	801.5	633.5

Of the 25 origins in the 17th year of vegetation, 16 variants exceeded the V_{12} control variant, achieving higher yields by up to 43%. In the 18th year of vegetation, 2023 (table 1.). values were obtained between 6935 kg•ha⁻¹ D.M. at V_{1 B1CL1} and 10303 kg•ha⁻¹ D.M. at V_{11 B1CL11} variant, with 1774 kg•ha⁻¹ D.M. more than the control variant. Significant statistical significance was obtained in $V_{10 B1CL10}$, $V_{24 Doina}$, significant and very statistical

significance in $V_{7~B1CL7}$, $V_{11~B1CL11}$, and $V_{22~Doina}$ variants. In 2023, only 9 variants exceeded the V_{12} control variant, up to 20 % more. The year 18 being also the year in which the production of the d.m was superior, the control variant V_{12} obtained 8529 kg•ha⁻¹ while in the years 17 and 18 vegetation the obtained quantities were much lower, 3420 kg•ha⁻¹, respectively 6673 kg•ha⁻¹ D.M.


Table 2
Average production at first cut in the 17, 18, and 19 years of vegetation at Bromus inermis Leyss.

Variant	Production kg•ha ⁻¹ D.M.	Difference		Cignificance
	average 2022, 2023, 2024	%	kg/ha	Significance
V _{1 B1CL1}	5459	87.9	-749	000
V _{2 B1CL2}	6126	98.7	-81	
V _{3 B1CL3}	6680	107.6	473	*
V ₄ B1CL4	6307	101.6	100	
V _{5 B1CL5}	6050	97.5	-157	
V _{6 B1CL6}	6113	98.5	-94	
V _{7 B1CL7}	6991	112.6	784	***
V _{8 B1CL8}	6309	101.6	102	
V _{9 B1CL9}	7237	116.6	1030	***
V _{10 B1CL10}	6701	108.0	494	*
V _{11 B1CL11}	8070	130.0	1863	***
V ₁₂ Olga control	6207	100	C.	C.
V _{13 B2CL1}	5666	91.3	-541	0
V ₁₄ B ₂ CL ₂	5960	96.0	-247	
V ₁₅ B ₂ CL ₃	6199	99.9	-8	
V ₁₆ B ₂ CL ₄	6582	106.0	375	
V ₁₇ B ₂ CL ₅	6051	97.5	-156	
V ₁₈ B ₂ CL ₆	6446	103.9	239	
V ₁₉ B ₂ CL ₇	5878	94.7	-329	
V ₂₀ B ₂ CL8	5788	93.2	-419	0
V ₂₁ B ₂ CL ₉	5840	94.1	-367	

V _{22 Doina}	6673	107.5	466	*
V _{23 Doina}	6193	99.8	-14	
V _{24 Doina}	6454	104.0	247	
V _{25 Doina}	6700	107.9	493	*
	LSD	0.5%	411.8	
		0.1%	549.1	
		0.01%	715.0	

In the 19th year of vegetation, 2024 (table 1), the obtained values were between 5997 kg•ha⁻¹ D.M. at V_{1 B1CL1} and 9622 kg•ha⁻¹ D.M. at V_{11 B1CL11}. This year, too, values with positive statistical assurance were obtained for V_9 , V_{10} , V_{11} , V_{16} , and V_{23} variants, obtaining significant statistical significance. In this field of the 25 variants, 12 proved to be superior to control variant (V_{12}) , production varied depending on the

vegetation year and especially the climatic conditions of the year. In the three years of research (table 2.), the average production ranged from 5459 kg•ha⁻¹ to $V_{1 B1CL1}$ and 8070 $kg \cdot ha^{-1}$ to V_{11} B₁CL₁₁. The results obtained in the three years of production (table 2), show that this species achieves an important production of s.u. and in the 17-19 years of vegetation, these varied depending the on climatic conditions of the year.

Figure 2. D.M. Production deviation from the average (kg•ha-1 D.M.)

Compared to the average over the three years of production (17, 18, and 19 vegetation), the positive and negative deviations (figure 2.) were recorded at the V_8 , V_4 , V_1 , and V_{20} variants. The positive and negative deviations with the highest amplitude were recorded in the V_{22} , V_{11} , and V_{24}

variants. The most important variants being V_8 and V_1 , they are stable according to the climatic conditions of the last three years of vegetation, the obtained production did not have an increase or decrease compared to the V_{22} variant, where the oscillations were very much more in these years of production.

Assessing origins requires the determination of quantitative traits, as hereditary traits are a source of genetic diversity and can be easily modified under environmental

conditions. The creation of new valuable varieties is possible due to the large range of variability within the genetic resources of *Bromus inermis* Leyss.

CONCLUSIONS

In this research, the dry production obtained matter. differences with statistical assurance. In 2022. vear vegetation productions were 3035 kg•ha⁻¹ D.M. and 4897 kg•ha⁻¹ D.M., in 18 year vegetation, the obtained productions ranged between 6935 kg•ha⁻¹ and 10303 kg•ha⁻¹, and in 19 year vegetation, the production was between 5997 kg•ha-1 D.M. and 9622

kg•ha⁻¹. The highest yields in the three years studied were obtained at the V₈ variant, in the 17th year of vegetation, and at V_{11} , in the 18th and 19th years of vegetation. This study shows that this species, Bromus inermis. is a resistant species with high perennial, drought-tolerant, obtaining productions and in the 17-19 years of vegetation.

REFERENCES

- 1. Deak A., Hall M.H., Sanderson M.A., (2009) Grazing schedule effect on forage production and nutritive value of diverse forage mixtures. Agron. J., 101:408-414.
- 2. Hancock D.W. (2011) Using relative forage quality to categorize hay. The University of Georgia and Ft. Valley State University.
- 3. Kostopolulu P., Karatassiou M., (2016) Photosynthetic response of *Bromus inermis* in grassland of different altitudes. Turkish Journal of Agriculture and Forestry.40:642-653.
- 4. Kozłowski S., Golińska, Aktualne B. (1992) Problemy Produkcji Nasiennej Stokłosy Bezostnej (*Bromus inermis* Leyss.) w Wielkopolsce. Biul. IHAR Poznań, 184:47–57.
- 5. Kroeger N.E, Otfinowski R. (2024) Adaptive root morphology as a drought response in *Bromus inermis*. Journal Article. Plant and Soil. DOI.10.1007/s11104-024-06926-x.
- 6. Raawe H. (2004) About Grass and Legume Species Suitability for Recultivation of Semi-Coke Dumps. Agronomy, 219:154–156.
- 7. Turk M., Albayrak S., Bozkurt Y. (2015) The change in the forage quality of smooth bromegrass (*Bromus inermis* L.) in grazing and non-grazing pastures. Research for rural development. 1.
- 8. Undersander D., Casler M., Cosgrove D. (1996) Identifying pasture grasses. Cooperative Extension Publications, A3637, 58p.