URBAN GRASSLAND - A BIODIVERSITY RESOURCE

Veronica SĂRĂŢEANU ¹, Otilia COTUNA ^{1*}, Daniela Sabina POŞTA^{1*}, Mirela PARASCHIVU ^{3*}

¹ Banat's University of Agricultural Sciences and Veterinary Medicine"King Michael I of Romania" from Timişoara, Calea Aradului 119, code 300645 Timişoara, Romania

² University of Craiova, Faculty of Agriculture and Horticulture, Romania

*Corresponding authors: otiliacotuna@yahoo.com; posta.daniela@gmail.com;
paraschivumirela@yahoo.com

Abstract

Urban grassland is a biodiversity resource compared to secondary permanent grassland at different stages of succession. Maintenance work on these areas is generally limited to mowing once or a few times a year, the frequency of which has an impact on the expression of floristic composition and biodiversity. There is a great variability in biodiversity from one year to the next due to the anthropogenic factors, but also to the biotic and abiotic factors involved. The purpose of the work was to highlight recent information regarding the importance of urban grasslands as source of biodiversity, Also, there were mentioned practical examples to speed up the setting and maintenance of extensive groundcovers instead of turf.

Keywords: urban grassland, biodiversity, vegetation, turf, sustainable maintenance.

INTRODUCTION

Well-maintained. perfectly mown turfs are a symbol of the modern urban landscape. Today, turfs take up about 70% of green spaces in cities. With increasing social environmental awareness, however, this concept is beginning questioned, namely the usefulness and necessity of high frequency mowing. alternative. urban meadows simply letting the grass grow wild and tall are proposed. Why is this a problem? Given assumptions that 70% world's almost of the population will live in cities by 2050, the careful integration of nature into urban areas is extremely important. This is very important for our mental health and well-being,

and for the wildlife with which we will have to share increasingly large urbanised areas (Obluska, 2020).

According with Yang et al. (2019) sustainable lawn alternatives are urgently needed in China due to the intensive maintenance of lawns and potential threats to the urban environment due cultural to deficiencies. They have noticed the analysis of some questionaries addressed to inhabitants that the establishment of biodiverse lawn alternatives is not welcome in urban areas but may be acceptable in areas with ecological vision, wetland parks, and suburban areas.

Local authorities often plan to state the value of natural habitats

and agree that the quality and functionality of the green infrastructure must be improved. Such actions require scientific knowledge to create and maintain new habitats that provide ecosystem services in urban and peri-urban landscapes (Mårtensson, 2017).

In an experiment replicated in six urban public green spaces, nine different perennial grassland mixtures were used to quantify the relative roles of floristic diversity and seeded grassland height on the richness and composition of three taxonomic groups of organisms: plants, invertebrates and microorganisms. All experimental variants were found to be colonised by plant species that were not sown, suggesting that the establishment of sown grassland did not prevent the subsequent development grassland locally determined by the soil seed supply, if management was appropriate. Colonising were rarer in plots dominated by tall and more diverse species, indicating that tall species limit competition and may limit invasion rates. Established urban meadows had different invertebrate and microorganism communities compared to turf. Invertebrate taxa responded to changes in both height and vegetation richness, but most more abundant where vegetation height was higher. For example. the richness Coleoptera family has increased with summer plant diversity. The composition of the microorganism

community was more strongly influenced by plant species on the soil surface. In the case of deeper microbial community variation was most sensitive to plant height, with bacteria and fungi responding differently. In addition to improving resident satisfaction, grasslands have urban high biodiversity, support richer and abundant invertebrate communities and stable more communities of plants, invertebrates and soil microorganisms compared to turf. Research results in the field suggest that diversifying greenspace by establishing urban grasslands in place of grassed areas generates substantial biodiversity benefits, with a mosaic of grassland types (Norton *et al.*, 2019).

Another example of replacing turf with urban grassland comes from UK. Thus, Hoyle et al., (2017) were collaborated with the local authorities from Bedford and Luton (United Kingdom). establishing experimental perennial grasslands at seven sites. from 2013 to 2015. After removing the existing turf, the plots were seeded with native and grassland perennial species. Plots were maintained using different mowing frequencies at different hights. There was used questionnaire survey the to satisfaction of the users of the green spaces from nearby, the results showing the increase of the users' satisfactions for the transformed green spaces.

Fig. 1. The turf has been replaced with a seeded perennial grassland composed of native plants (in 2013 (left) and in 2015 (right) (Hoyle *et al.*, 2017).

According to a 2012 article in The Guardian, urban meadows next to tower blocks, children spending their free time in rustic playgrounds, not to mention all those farmers' markets, show that England's cities can't seem to get some of the countryside (Cocoza, 2012).

The London Fields area of east London, for example, is home to a wildflower meadow and woodland area where rangers have built rustic furniture from branches.

This ruralisation of the green spaces in urban areas can be seen throughout Britain, from Kinross to Bristol (Cocoza, 2012).

Urban greening should consider solutions that meet the

DISCUSSIONS

Urban grassland definitions

Urban grasslands are self-sustaining plant communities that have low impact and provide numerous ecological services (https://www.urbanmeadow.org/what-is-an-urban-meadow, accessed on 15 June 2023).

requirements of the EU Biodiversity Strategy 2030, including improving biodiversity. Urban parks can meet these needs. They often have wide areas proper for designing green infrastructure that include elements of biocenosis, and biodiversity at the level of the landscape (Borysiak and Stepniewska, 2022).

One of the biggest barriers to urban grassland adoption is the perceived aesthetics, but a smart design and a little education can overcome this obstacle in the general acceptance of the urban grassland concept (https://www.urbanmeadow.org/what-is-an-urban-meadowaccessed on 15 June 2023).

Meadows are smart and sustainable ways to preserve or restore green spaces. Urban grasslands are not just "greening" or grassing.

Much of the traditional green space or landscape in urban areas relies heavily on intensive maintenance to keep plants at the right size, to keep ornamental plants and turf alive and to prevent excessive weed growth. Urban turfs in contrast are much more than just green spaces in cities. They create functional natural ecosystems in cities.

Urban meadows are the opposite of derelict brownfield sites, but also of green spaces that require intensive care at high cost.

Urban grassland consists of plants that grow and thrive well on typical urban soil, create an aesthetically pleasing vegetated area on vacant lots and beyond, and are maintained with minimal effort (Tredici, 2016).

Urban grassland design

Even small areas of wildflowers and tall grass can bring a sense of "country" or "wilderness" in a city. Many disturbed areas with heavily modified substrates have naturally evolved into natural-like habitats with a mix of native and wild plants, creating unique landscapes

(https://conservationhandbooks.com/the-urban-handbook/grasslands/accessed on 18 June 2023).

Sometimes it can take several years for fine grasses and wildflowers to become dominant over weeds. But as each year passes the surface will look better. Following the principle "beauty is in the eye of the beholder" proponents of the urban meadow concept hope that the natural beauty of seminatural meadows, and the presence

of associated wildlife such as butterflies and bees, will find a place in urban areas, as they do not have favourable living conditions in classically grassed ones (https://www.rugby.gov.uk/info/20046/parks open spaces play areas/345/urban meadows/3, accessed on 15 June 2023).

Design and establishment of urban meadows, referred to **MEADOWSCAPING** is the practice of designing, planting and urban meadows managing provide ecological functions and benefits such as improved habitat quality. and stormwater urbanization and intensive agriculture and pesticide use greatly impact pollinators, urban meadow landscaping provides important habitat for species many organisms in areas that would otherwise lack beneficial native species. plant Urban meadow landscaping not only pollinators, but also helps reduce our carbon footprint, conserve and enhance biodiversity, and increase awareness of our natural cultural heritage (https://greenworkspc.com/ourwork/ 2020/2/27/the-meadowscapinghandbook-designing-planting-andmanaging-an-urban-meadow. accessed on 15 June 2023).

Factors implied in urban grassland development and biodiversity

The factors involved in the setting and evolution of the

biodiversity in urban grassland are biotic, abiotic and anthropic.

The main *biotic factors* implied in the development of urban meadows are: soil seed bank and propagules driven by different natural vectors (e.g. animals, wind, water *etc.*) and soil microbiota (microflora and microfauna).

Abiotic factors influential for urban meadows are: climate, soil fertility, water supply, shading etc.

Some of the anthropic factors with implications in urban grassland biodiversity transport are: persons and goods, maintenance (seeding, works trimming frequency, over-seeding etc.). building activities, bringing in biological material from other (seeds. microorganisms, sources fertile soil from dethatching etc.).

According with the research developed by Hitchmough et al. (2017), the interaction between two canopy layers in seeded herbaceous perennial plant community was studied over a period of five years to see if it was possible to create landscape vegetation that was both flower-rich during a long period of time and has the ability to cope with weed invasion verv at maintenance levels. They concluded that such vegetation forms attractive and sustainable design model for growing herbaceous plants communities in urban landscape spaces.

Common management practices can directly and indirectly

influence soil factors in urban grasslands, which in turn can influence the microbial-mediated processes from the soil (Thompson and Kao-Kniffin, 2019).

Wildflower meadows have high biodiversity value and can grow in degraded areas where nitrophilous species can dominate. This makes them suitable for use in peri-urban and urban promoting local flora, creating habitat for pollinators and other animals. and increasing small overall biodiversity (Fernandes et al, 2023).

Increased structural complexity and diversity of plants increases heat mitigation and arthropod biodiversity in the habitats of low-height urban green infrastructure (Francoeur *et al.*, 2021).

Also, urban green spaces are often subject to intensive management and therefore provide habitat for only a small number of plant and animal species. Several studies have already shown that less intensive management of seminatural grassland habitats from urban area can increase biodiversity, including butterflies (Christoffer *et al.*, 2021).

Urban grassland vs. turf

Urban wildflower meadows have the potential to provide important nature-based solutions that simultaneously address to the biodiversity, climate crises and benefit society. Thus, in a study

developed at King's College Cambridge (UK) on a lawn first established 1772 in it was demonstrated that small urban meadows, when provided at a lower comparison with in maintenance of the traditional lawns, offer significant benefits for biodiversity, cultural ecosystem services, and climate change mitigation (Marshall et al., 2023).

Urban grassland vegetation is often perceived by residents and decision-makers as "messy" and undesirable, especially in urban areas, and there is a tendency to overlook or ignore the ecological value of naturally occurring grasslands, perhaps distracted by its seemingly "chaotic" aesthetic (Filibeck et al., 2016).

According with Barne et al. (2018), the question around the world is whether to move away

from commonly used vegetation cover options in urban environment that require many inputs (e.g. water, fertilizers, pesticides) and intensive management (e.g. lawn clipping, sowing etc.) to more sustainable, low-input, low-management vegetation covers. During research overall. managers expressed a positive view of lowinput grasses, demonstrating interest in transitioning to more sustainable management. They have also shown significant support for city programs to convert public and private land to low-input urban land, e.g. using low input lawn species.

In Table 1 is presented a comparison between the urban grassland and turf. It is obvious that, at least from ecologically friendly cost-effective perspectives, and urban grasslands are more suitable in the context of sustainability. The acceptance of this solution

Table 1

Urban	grass	land	versus	turf

	Urban grassland versus turf				
Urban grassland			Turf		
•	It is a refuge for pollinators,	•	Short mown turfs designed for		
	invertebrates and small vertebrates;		recreational use are dominant form of		
•	More efficient carbon sequestration		urban green space in temperate regions;		
	compared to urban turfs;	•	requires intensive maintenance at high		
•	Lower carbon footprint compared to		cost;		
	maintenance-intensive green spaces;	•	Short durability without maintenance;		
•	Lowers ambient temperature;	•	usually provides limited habitat value		
•	Contributes effectively to emotional		for most taxa;		
	well-being;	•	Has very low biodiversity;		
•	Reduced energy consumption and	•	Not suitable for pollinators due to the		
	maintenance inputs.		application of pesticides for		
	•		maintenance and the high frequency of		
			the works applied on it.		

According with Sehrt *et al.* (2020) reducing mowing is a simple and effective measure to increase biodiversity in urban grasslands.

The formation of urban grassland communities is the result of several spatiotemporally distinct processes. Carrying out extensive grass mowing and giving high conservation priority to the grasslands with a habitat connectivity it will reduce the risk

of endangered species loss in suburban landscapes. The hypothesis is that this may be a promising tool for conserving grassland species in urban area (Tsuzuki *et al.*, 2020).

Maintaining species richness alone is not sufficient to ensure the provision of ecosystem services related to other functions such as water and nitrogen use (Onandia *et al.*, 2019).

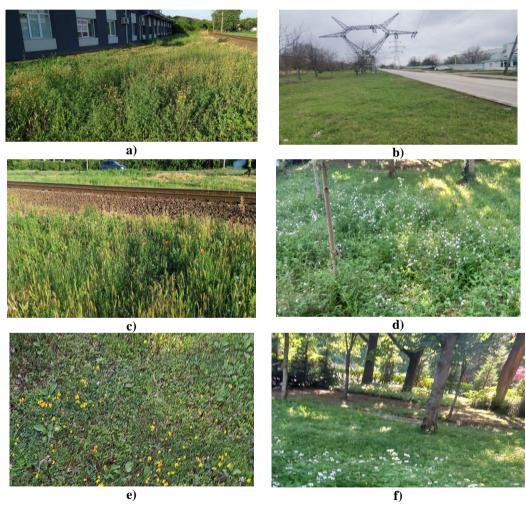


Fig. 2. Examples of urban meadows from Romania: a), b), c) images from Timișoara; d), e) and f) images from Râmnicu Vâlcea (photo a, c, d, e and f by Daniela Poșta; photo b by Veronica Sărățeanu)

CONCLUSIONS

The biodiversity of urban grasslands can be much higher compared to many types of permanent grassland due to the many more variables involved in the formation of its vegetation cover.

The evolution of urban grassland biodiversity involves a very wide variety of intervening vectors, most of which are

anthropogenic, such as construction, soil mobilisation or removal, transport, landscaping *etc*.

Even if the impact of natural factors is less in urban areas, they still play an important role in the formation and evolution of these urban vegetation covers, such as wind, birds, soil seed bank, pollinators *etc*.

Acknowledgments

This work is realised with the support of the Monitoring Unit for Invasive Species from Life Sciences "King Michael I of Romania" from Timişoara.

REFERENCES

- 1. Barne M.R., Nelson K.C., Meyer A.J., Watkins E., Bonos S.A., Horgan B.P., Meyer W.A., Murphy J., Yue C. (2018), Public land managers and sustainable urban vegetation: The case of low-input turfgrasses, Urban Forestry & Urban Greening, 29: 284-292, https://doi.org/10.1016/j.ufug.2017.12.008
- 2. Borysiak J., Stępniewska M. (2022) Perception of the Vegetation Cover Pattern Promoting Biodiversity in Urban Parks by Future Greenery Managers, Land 11, no. 3: 341. https://doi.org/10.3390/land11030341
- 3. Christoffer L.K., Reich M., Zoch A. (2021) Extensively managed or abandoned urban green spaces and their habitat potential for butterflies, Basic and Applied Ecology, 54:85-97, https://doi.org/10.1016/j.baae.2021.04.012
- 4. Cocoza P. (2012), The new ruralism: how the pastoral idyll is taking over our cities, https://www.theguardian.com/artanddesign/2012/nov/18/new-ruralism-takes-over-cities accessed on 15 June 2023.
- 5. Del Tredici P. (2016) Cosmopolitan Urban Meadow, https://newpublicsites.org/sites/cosmopolitan-urban-meadow/accessed on 15 June 2023.
- 6. Fernandes M.P., Matono P., Almeida E., Pinto-Cruz C., Belo A.D.F. (2023) Sowing wildflower meadows in Mediterranean peri-urban

- green areas to promote grassland diversity. Front. Ecol. Evol. 11:1112596. https://doi.org/10.3389/fevo.2023.1112596
- 7. Filibeck G., Petrella P., Cornelini P. (2016) All ecosystems look messy, but some more so than others: A case-study on the management and acceptance of Mediterranean urban grasslands, Urban Forestry & Urban Greening, 15: 32-39, https://doi.org/10.1016/j.ufug.2015.11.005
- 8. Francoeur X.W., Dagenais D., Paquette A., Dupras J., Messier C. (2021) Complexifying the urban lawn improves heat mitigation and arthropod biodiversity, Urban Forestry & Urban Greening, Volume 60,127007, https://doi.org/10.1016/j.ufug.2021.127007
- 9. Hitchmough J., Wagner M., Ahmad H. (2017), Extended flowering and high weed resistance within two layer designed perennial "prairie-meadow" vegetation, Urban Forestry & Urban Greening, 27: 117-126, https://doi.org/10.1016/j.ufug.2017.06.022 accessed on 15 June 2023.
- 10. Hoyle H., Jorgensen A., Warren P., Dunnett N., Evans K. (2017) "Not in their front yard" The opportunities and challenges of introducing perennial urban meadows: A local authority stakeholder perspective, Urban Forestry & Urban Greening,25:139-149, https://doi.org/10.1016/j.ufug.2017.05.009 accessed on 15 June 2023.
- Marshall, C. A. M., Wilkinson, M. T., Hadfield, P. M., Rogers, S. M., Shanklin, J. D., Eversham, B. C., Healey, R., Kranse, O. P., Preston, C. D., Coghill, S. J., McGonigle, K. L., Moggridge, G. D., Pilbeam, P. G., Marza, A. C., Szigecsan, D., Mitchell, J., Hicks, M. A., Wallis, S. M., Xu, Z. ... Eves-van den Akker, S. (2023) Urban wildflower meadow planting for biodiversity, climate and society: An evaluation at King's College, Cambridge. Ecological Solutions and Evidence, 4, e12243. https://doi.org/10.1002/2688-8319.12243
- 12. Mårtensson L.M. (2017) Methods of establishing species-rich meadow biotopes in urban areas, Ecological Engineering, Volume 103, Part A, p. 134-140, https://doi.org/10.1016/j.ecoleng.2017.03.016
- 13. Norton B. A, Bending, G. D., Clark, R., Corstanje, R., Dunnett, N., Evans, K. L., Grafius, D. R., Gravestock, E., Grice, S. M., Harris, J. A., Hilton, S., Hoyle, H., Lim, E., Mercer, T. G., Pawlett, M., Pescott, O. L., Richards, J. P., Southon, G. E, Warren, P. H. (2019) Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity. Ecological Applications, 29(6): e01946.10.1002/eap.1946.

- 14. Obluska E. (2020) Urban meadows, or why it's better to forget about a trimmed lawn?, https://ecoreactor.org/en/urban-meadows/accessed on 15 June 2023.
- 15. Onandia G., Schittko C., Ryo M., Bernard-Verdier M., Heger T., Joshi J., Kowarik I., Gessler A. (2019) Ecosystem functioning in urban grasslands: The role of biodiversity, plant invasions and urbanization. PLOS ONE 14(11): e0225438. https://doi.org/10.1371/journal.pone.0225438
- 16. Sehrt M., Bossdorf O., Freitag M., Bucharova A. (2020), Less is more! Rapid increase in plant species richness after reduced mowing in urban grasslands, Basic and Applied Ecology, 42:47-53, https://doi.org/10.1016/j.baae.2019.10.008
- 17. Thompson G.L., Kao-Kniffin J., (2019) Urban Grassland Management Implications for Soil C and N Dynamics: A Microbial Perspective. Front. Ecol. Evol. 7:315. https://doi.org/10.3389/fevo.2019.00315
- 18. Tsuzuki Y., Koyanagi T.F., Miyashita T. (2020). Plant community assembly in suburban vacant lots depends on earthmoving legacy, habitat connectivity, and current mowing frequency. Ecol Evol., 10: 1311–1323. https://doi.org/10.1002/ece3.5985
- 19. Yang F., Ignatieva M., Larsson A., Zhang S., Ni N. (2019), Public perceptions and preferences regarding lawns and their alternatives in China: A case study of Xi'an, Urban Forestry & Urban Greening, 46: 126478, https://doi.org/10.1016/j.ufug.2019.126478
- 20. *** https://conservationhandbooks.com/the-urban-handbook/grasslands/ accessed on 18 June 2023.
- 21. *** The Meadowscaping Handbook: Designing, Planting and Managing an Urban Meadow, https://greenworkspc.com/ourwork/2020/2/27/the-meadowscaping-handbook-designing-planting-and-managing-an-urban-meadow accessed on 15 June 2023.
- 22. *** https://www.urbanmeadow.org/what-is-an-urban-meadow accessed on 15 June 2023.
- 23. *** Urban meadows https://www.rugby.gov.uk/info/20046/parks_open_spaces_play_are as/345/urban_meadows/3 accessed on 15 June 2023.