

Romanian Journal of Grassland and Forage Crops

The Romanian Society for Grassland RJGFC No. 31/2025 https://sropaj.ro

Romanian Journal of Grasslands and Forage Crops

General Editor

Costel SAMUIL, Iasi University Of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iaşi, România

Science Editors

- Florin-Simion PĂCURAR, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăștur St., 400372 Cluj, România
- Veronica SĂRĂȚEANU, Timisoara University Of Life Sciences, 119 Aradului St., Timișoara, România
- Adrian-Vasile BLAJ, Research And Development Grasslands Institute, 5 Cucului St., Brasov, 500128

Publisher Director

Mirela-Roxana VIDICAN, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăștur St., 400372 Cluj, România

Production Editors

Nicuşor-Flavius SIMA, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj, România

Lingvistic Editor

Simona Catrinel AVARVAREI, Iasi University Of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, România

Technical Support

- Culiță SÎRBU, Iasi University Of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iași, România
- Adrian-Ilie NAZARE, Iasi University Of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, România

Journal Secretary

Anca PLEŞA, University Of Agricultural Science And Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, România

Board Editor

- Lucien CARLIER, Institute For Agricultural And Fischeries Research (ILVO), PLANT-Crop Husbandry And Environment, Burg. Van Gansberghelaan 109, B-9820 Merelbeke, Belgium
- Albert REIF, Faculty Of Forestry And Environmental Sciences, Univ. Freiburg, Tennenbacher St. 4, Germany
- Evelin RUŞDEA, Faculty Of Forestry And Environmental Sciences, University Freiburg, Tennenbacher, St. 4, Germany
- Alex De VLIEGHER, Institute For Agricultural And Fischeries Research (ILVO), PLANT-Crop Husbandry And Environment, Burg. Van Gansberghelaan 109, B-9820 Merelbeke, Belgium
- Ioan ROTAR, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj, România
- Vasile VÎNTU, Iasi University Of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, România
- Mirela-Roxana VIDICAN, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăștur St., 400372 Cluj, România
- Florin-Simion PĂCURAR, University Of Agricultural Sciences And Veterinary Medicine, 3-5 Mănăștur St., 400372 Cluj, România
- Luminiţa COJOCARU, Timisoara University Of Life Sciences, 119 Aradului St., Timişoara, România
- Veronica SĂRĂŢEANU, Timisoara University Of Life Sciences, 119 Aradului St., Timișoara, România
- Adrian-Vasile BLAJ, Research And Development Grasslands Institute, 5 Cucului St., Braşov, 500128, România

General Editor: Costel SAMUIL

Science Editor: Florin-Simion PĂCURAR

Veronica SĂRĂŢEANU Adrian-Vasile BLAJ

© Copyright 2024

All Rights Reserved. No Part Of This Publication May Be Reproduced, Stored Or Transmitted In Any Form Or By Any Means, Electronic Or Mecanical, Including Photocopying, Recording, Or Any Information Storage And Retrieval Sistem, Without Permission In Writing Form The Publisher, With The Exception Of Faire Dealing For Purposesof Research Or Private Study, Or Ciclism Or Review. The Romanian Society For Grassland Considers The Printed Version Of Romanian Journal Of Grasslands And Forage Crops As The Official Version Of Record.

Printed In Cluj Napoca By Academic Press Printers

ISSN 2068 - 3065 (Print)

For Submission Instructions, Subscription And All Other Information Visit:

http://www.sropaj.ro

Disclaimer

The Publisher And Editors Cannot Be Held Responsible For Errors Or Any Consequences Arising From The Use Of Information Contained In This Journal; The Views And Opinions Expressed Do Not Necessarily Reflect Those Of The Publisher And Editors, Neither Does The Publication Of Advertisements Constitute Any Endorsement By The Publisher And Editors Of The Products Advertised.

Publisher Romanian Journal of Grasslands and Forage Crops is Published By Academicpress Printers - University of Agriculture Science and Veterinary Medicine Cluj-Napoca, Mănăştur St., No. 3, 400372, Cluj-Napoca, România. Tel: 004/0264-596384, Fax: 004/0264-593792, e-mail: eap@usamvcluj.ro

Typing: - Adrian-Ilie NAZARE

Cover: - Veronica SĂRĂTEANU

Contents

- 7_ Florin PĂCURAR, Ioan ROTAR, Roxana VIDICAN, Ioana GHEŢE, Anca PLEŞA and Claudiu ŞERBAN
- Evaluation of the abundance of the species *Adonis vernalis* in the Târnav Plateau using modern technologies
- 23_ Claudiu ŞERBAN, Ioan ROTAR, Florin PĂCURAR, Ioana GHEŢE, Anca PLEŞA
- Studies on the ecological restoration of grassland ecosystems at the Păltiniș experimental station
- 33_ Teodor MARUŞCA, Monica A. TOD, Paul M. ZEVEDEI, Marcela M. DRAGOŞ, Vasile MOCANU
 The pratotechnical conditions in the Bucegi Mountains where the new variety of *Phleum pratense* "Carpatica" was created
- 39_ Teodor MARUŞCA, Jóseph P. FRINK, Monica A. TOD, Marcela M. DRAGOŞ, Cristina I. PORR, Cristina C. COMŞIA
- Productivity of the grasslands in the Arieş Valley of the Apuseni Mountains
- 47_Loredana CRIŞAN, Roxana VIDICAN, Vlad STOIAN, Anca PLEŞA, Bianca POP, Alexandra Gheorghiță
- Studies on the heavy metal bioremediation ability of multiple species – a case study on Baja Mare sites

- 59_ Teodor MARUŞCA, MIHĂILĂ Elena, MEMEDEMIN Daniyar, TAULESCU Elena, BÎTCĂ Mihăiţă Studies on the economic evaluation of the productivity of agrosilvopastoral systems with downy oak (*Quercus pubescens*) in Dobrogea
- 67_Adrian-Ilie NAZARE, GRIGORAŞ Bogdan-Ioan, Vasile VÎNTU, Costel SAMUIL
- Research on the behavior of perennial grasses and legumes in simple and complex mixtures in the conditions of the Moldovian forest-steppe
- 77_ Monica Alexandrina TOD,
 Mironela BĂLAN, Victor Tîtei, Ana
 GUŢU
 Evaluation of maadow foscu
- Evaluation of meadow fescue (Festuca pratensis Huds.) germplasm for breeding purposes
- 85_Bianca POP, Roxana VIDICAN, Vlad STOIAN, Anca PLEŞA, Alexandra GHEORGHIŢĂ The synergy between plants and microorganism in heavy metals removal – a short review
- 99_ Elena-Manuela (BĂDRĂGAN) VACARCIUC, Ana-Maria DUDĂU, Elena STAVARACHE, Mihai STAVARACHE
- Forage productivity of some smooth bromegrass (Bromus inermis Leyss.) clones

105 Mirela RANTA

The adaptability of the galloway breed to romanian pastures: a systematic analysis of zootechnical potential – a review

115_ Mirela RANTA, Florin PĂCURAR, Ioana GHEȚE

Highland cattle – potential for integration and adaptation to the extensive system at Cojocna farm

125_ Victor ŢÎŢEI

The quality indices of fodder from *Cichorium intybus* and *Carthamus tinctorius*, grown under the conditions of the Republic of Moldova.

141_ Victor ŢÎŢEI

The yield and quality of green mass of *Glycine max* grown in the central zone of the Republic of Moldova

EVALUATION OF THE ABUNDANCE OF THE SPECIES ADONIS VERNALIS IN THE TÂRNAV PLATEAU USING MODERN TECHNOLOGIES

Florin PĂCURAR, Ioan ROTAR, Roxana VIDICAN, Ioana GHEȚE, Anca PLEȘA and Claudiu SERBAN

*Faculty of Agriculture. Department of Plant Crops. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur street, 3-5, 400372, Romania.

*Corresponding author, e-mail: ioana.vaida@usamvcluj.ro

Abstract

The great diversity of orographic, climatic and pedological conditions encountered in the area of permanent grasslands in Romania gives them great heterogeneity in terms of floristic composition, production and forage quality.

The presence of the Carpathian Mountains causes a profound change in the climatic conditions and, therefore, in those of the soil and vegetation.

The purpose of the research is: assessment of habitats and abundance of the species Adonis vernalis from 2 different resorts.

The objectives pursued were the following: characterization of the floristic composition and biodiversity of the 2 habitats; assessment of the abundance of the Adonis vernalis species by quantifying all individuals.

Keywords: Adonis vernalis, Blaj, biodiversity, abundance, grasslands management

INTRODUCTION

The flora and vegetation of the Târnave Plateau (Transylvanian Plateau) has not been the subject of a complex and in-depth study to date. This territory, dominated by low-altitude hills and mountains, does not seem to be an area where spectacular floristic results can be recorded. Until now, it has not attracted the attention of specialists. However, contrary to expectations, the presented territory shelters an extremely rich flora, namely a varied grassland canopy, due to the geomorphological factor, constitutes a contact region that extends in the vicinity of the plain

region and to the fact that it is an interference zone into which floristic elements from verv different geographical regions have penetrated. The most studied region is the Natura 2000 site Sighisoara -Târnava Mare, which has exceptional scientific value at an international level. This is reflected both in terms of landscape and species diversity. The spring buttercup (Adonis vernalis) is a perennial herbaceous plant, from the Ranunculaceae family, known under several popular names: horse-weed, talan weed, black weed, etc. It is a melliferous, decorative, medicinal,

but also toxic plant. Its toxic principles are adonitoxin, which contains coumarin and a coumarin derivative, vernadine. By drying the toxicity of the plant is preserved, and bv boiling the toxicity disappears. Animals that consume the plant manifest toxic sensitivity, consisting of gastroenteritis with rebellious diarrhea. polyuria, cardiovascular disorders externalized by accelerated pulse, then slowed down, heart failure, pale mucous membranes, collapse, convulsions, depression and their death. In humans, excess treatment with this plant leads to intoxication manifested by nausea, vomiting, diarrhea, cardiac arrest and even death. Treatment is with emetics, purgatives, activated charcoal and cardiac analeptics (Habel et al, 2013). Only the aerial parts are harvested, during flowering, which are used in both human and veterinary medicine, to treat dropsy migraines. and They cardiotonic and diuretic, calming, slightly hypertensive action. It gives good results in the treatment of tachycardia, extrasystoles nervous nature, arterial hypotension and neurovegetative disorders (Pârvu. 2010). Adonis vernalis grows on steep slopes, in dry, sunny pastures and meadows, from the plains the mountains. to distribution limited is by hydrological factors. Thus, it is distributed where less than 500 mm of precipitation falls per year. In Romania it is widespread in the

plateau and hill areas, in the Romanian Subcarpathians. It is widespread in Central and Southern Europe, but also in Western Asia.

Adonis vernalis species. declared protected a Natural Monument, considered a Vulnerable Species (VU) on the National Red Lists (IUCN, since 2011); thus, the populations of this species require conservation measures. As a rare species of European flora, Adonis vernalis is listed in the Red Books or in the lists of protected plant species in Bulgaria, Hungary, Romania and Moldova. The anthropogenic impact on the Adonis vernalis species is materialized by: the expansion of arable land areas to the limit of the species' distribution. grazing. exploitation of the substrate of xerophilic meadows, where it is found (Niculescu et al., 2023). One of the species with national and international conservation priorities vernalis, species Adonis a of characteristic continental-Mediterranean xerothermal grasslands, belonging to the order Festucetalia valesiaceae. Most populations of Adonis vernalis have decreased considerably in size in many European countries in recent decades and. therefore. threatened species, it is maintained under the CITES agreement. The causes for which the species is threatened are complex. These overexploitation include populations (intensive agricultural practices) or overenclosure

patches due to secondary succession of grasslands.

Some causes are also due to the biology and ecology of the plant. (Denisow *et al.*, 2014).

The main purpose of this work is to evaluate the current state of habitats and abundance of the plant species Adonis vernalis in the Blaj area, a region of botanical interest from the point of view of biodiversity conservation. Through this research, it is aimed to obtain relevant data that will contribute to understanding the local ecology of the species, to substantiate some protection and conservation measures, as well as to highlight the role that the species Adonis vernalis plays within the studied ecosystems.

MATERIAL AND METHOD

The Transylvanian Plateau, also called the Transylvanian Basin (45°40'-47°50' N and 23°00'-25 °40' E) is a hilly area in central Romania. The research activity was carried out on a representative grassland area, called Obârsia Tiurului, in the Blaj locality. Blaj municipality is located at 23°55' east longitude and 46°10' north latitude, which gives it a relatively central position within the country. This brings it multiple advantages, such as: advantageous economic connections with the centers of the Târnavelor Plateau. Apuseni Mountains, the Southern Carpathians and the Mures Corridor. Blaj municipality

The specific objectives of this research are: characterizing the floristic composition and biodiversity of the two habitats studied - this characterization will allow the assessment of the degree of floristic diversity, the identification of any characteristic or invasive species, as well as the analysis of the ecological relationships existing between the component species of the habitat; evaluating the abundance of the Adonis vernalis species - where a quantification rigorous of individuals (bushes) from the two habitats will be carried out, using standard methods of inventory and ecological sampling.

located in the eastern part of Alba county (www.primariablaj.ro).

To determine the floristic composition of the grassland in the Târnavelor Plateau, a study was needed for which 2 floristic surveys were carried out, using the Braunmodified Blanquét method Păcurar and Rotar, in 2014, with three sub-notes and three subintervals, applied on 2 surfaces, each of 320 m². To evaluate the abundance of the plant species Adonis vernalis, 32 variants of 10 m² were delimited in each of the 2 plots/experiments, where each individual was counted (Figure 1).

Fig. 1 Original photo plot 1 and 2

Additionally, at the time of each floristic survey, using the GPS (Global Positioning System) device, data were recorded regarding the altitude (in meters, above sea level) and the exposure (in degrees, 0 – 360°) of the survey research point (Kent 2012).

Vegetation research using this method is carried out in 3 stages:

- 1. determining the extent of the phytocenosis and establishing the survey area.
- 2. compiling the survey: noting on the ground in a geobotanical sheet the following information:
- current survey number, name of the grassland body and the locality (county, commune), within whose radius it is located.
- survey area.
- altitude, exposure, slope (degrees or percentages), relief, characterization of the resort (erosion, salinization, etc.).
- general vegetation coverage, in percentages.
- height and vegetation layering.
- observations on vegetation dynamics, etc.

The floristic list alone is sufficient to characterize phytocenosis, therefore the main geobotanical indices are assessed and recorded. The requirements of plants for ecological factors (light, temperature, soil moisture, soil reaction and nitrogen) specified by species indicator values 9), according to (from 1 to (Ellenberg, 1998) updated by the Federal Agency for Nature Conservation, Germany (Bundesamt **Naturschutz** www.floraweb.de) and adapted to the conditions of our country by Kovács (1979). As specific names species depending on ecological categories of a factor, those developed by Păcurar and Rotar were used. Using descriptive statistics, analyses were carried out that are divided into two categories: central tendency parameters and dispersion indicators. central tendency parameters include those procedures that provide a representative (central) value for the measured data series. There are three estimators that can be used in

this regard: mean, median and mode. Monitoring the *Adonis* vernalis species with the help of a drone - the flights were carried out using the DJI Matrice300 RTK drone. With its help, photographs were taken from 25 m height, 30 m, 40 m, and from 120 m, to determine the number of individuals of the

Adonis vernalis species from the photographs as well. Thus, the data and photographs obtained can be processed in the office at any time and do not require accelerated field research due to the very short vegetation period of the plant.

RESULTS AND DISCUSSIONS

Within the perimeter of Obârșia Tiurului commune, 2 plots were studied, different in type of grassland, as follows (figure 2):

Obârșia Tiurului _1 - grassland type *Stipa pennata – Festuca rupicola*

Obârșia Tiurului _2 - grassland type *Stipa pennata* - *Koeleria macrantha* (figure 3).



Fig. 2 Delimitation of plots on the Obârșia Tiurului grassland

Fig. 3 Photo of the pasture of Obârșia Tiurului _1

In the first plot, from this grassland, the *Stipa pennata* – *Festuca rupicola* type was identified, present on a land with a

slope of 20-25% and South-West exposure. The general vegetation coverage of the phytocenosis is 70%, the coverage with woody

vegetation is 5-6%, and that with is fresh molehills 3-4%. The degree of

vegetation consumption is 30-35% (table 1, figure 4).

Table 1

Condiții staționale ale pășunii Obârșia Tiurului 1

Survey code	Obârșia Tiurului _1
Locality	OBÂRȘIA TIURULUI
Grassland plot	Obârșia Tiurului
Altitude (m)	357
Slope (°)	20-25
Exposition	S-V
Land use	Pășune
Grassland type	Stipa pennata – Festuca rupicola
General cover (%)	70
Wooden vegetation cover (%)	5-6
Fresh molehills (%)	3-4
Erosion (%)	2-3
Consumption rate (%)	30-35

In the floristic composition of the *Stipa pennata* – *Festuca rupicola* grassland type, Poaceae have the largest share in the canopy, with an average participation of 43%. Plants from other botanical families (AFB) are present in a proportion of 27%, species from the Fabaceae family have a coverage of 3.5%, and species from the *Cyperaceae* – *Juncaceae* family are absent from the grassland.

The phytocenosis of the Stipa pennata – Festuca rupicola

grassland type has 20 species in its floristic composition. Among the Poaceae, in addition to the dominant species. Stipa bromoides with 12.5% appears, coverage. the plants from other Among botanical families, the following species stand out: Adonis vernalis (12.5%), Stachys germanica and Thymus glabrescens, each with a share of 5% in the grassland canopy (table 2).

Table 2

Floristic composition of the type of grassland $Stipa\ pennata-Festuca\ rupicola$ and specific requirement on ecological, agronomic and anthropogenic (B - BioForm, T - temperature, U - humidity, R - soil reaction, N - nutrition, C - tolerance of mowing, P -

tolerance of grazing, S - tolerance of crushed, OBF-other botanical family)

Ecological Agronomical		ance of crushed, ODI*-other			, 						
		_	dexes indexes			Species	Coverage	Is	Is*%		
L	T	U	R	N	C	P	S	-			
								Poacee	43		
8	7	3	8	2	-	-	-	Festuca rupicola	12.5	1	12.5
6	X	5	X	X	9	8	8	Poa pratensis	0.5	4	2
-	-	-	-	-	-	-	-	Stipa bromoides	12.5	-	0
8	7	2	8	2	-	-	-	Stipa pennata	17.5	X	0
								Fabacee	3.5		
8	7	2	7	2	-	-	-	Astragalus monspensulanus	0.5	1	0.5
6	6	4	3	2	-	-	-	Cytisus negricans	0.5	X	0
8	5	3	9	3	7	2	2	Medicago sativa	2.5	4	10
7	X	X	X	X	7	4	4	Trifolium pratense	0	4	0
								OBF	27		
7	6	3	7	1	-	-	-	Adonis vernalis	12.5	X	0
7	6	X	7	X	4	4	4	Convolvolus arvense	0.5	3	1.5
8	6	5	7	3	-	-	-	Eryngium planum	0.5	X	0
6	X	5	7	7	-	-	-	Euphorbia helioscopia	0.5	X	0
-	-	-	-	-	-	-	-	Filipendula hexapetala	0.5	-	0
7	X	5	X	6	-	-	-	Fragaria vesca	0.5	1	0.5
_	-	-	-	-	-	-	-	Gallium octonarium	0.5	-	0
9	7	1	9	1	-	-	-	Salvia nutans	0.5	X	0
7	6	3	8	X	-	-	-	Stachys germanica	5	X	0
8	7	2	8	2	-	-	-	Teucrium polium	0.5	X	0
8	6	3	6	3	-	-	-	Thymus glabrescens	5	X	0
-	-	-	-	-	-	-	-	Veronica praecox	0.5	-	0
		Σ	72	ı	27						
								Number of species	20		

From the point of view of fodder value, the *Stipa pennata - Festuca rupicola* type belongs to the

category of grassland unsuitable for grazing and supports a load of 0.20 livestock unit (LU) per ha (table 3).

Table 3

Classification of the Stipa pennata-Festuca rupicola grassland type

`	Classification of the supul permane I estimate impression grassiana type												
Im	provement coeffi	cient for	Note of	The	The	Grazing							
Patoral	Cover with	Woody	improving	· .	category of								
value	molehills	vegetation cover	mproving	class	grassland	(LU/ha)							
0.27	1	1	10	X	Improper	0.20							

Regarding Stipa pennata-Festuca rupicola type, it is noted,

according to the species' requirements for ecological factors:

9 heliophile species, one heliophilous species and one extremely heliophilous species. If we also take into account the cover, the phytocenosis has a heliophilous character. According to temperature preferences, we have 6 mesothermal species, 4 thermophilic species and 3 indifferent species, and the

hierarchy remains the same when taking into account the cover. The plants' requirements for humidity determine the presence of 5 mesoxerophilous species, 4 mesophilic species, 3 xerophilous species and one indifferent species. The character of the phytocenosis is a mesoxerophilous one (table 4).

Plant requirements for ecological factors

Table 4

Interval	Ligh	t	Tempera	iture	Humidity		
Tillel val	No. sp.	A%	No. sp	A%	No. sp.	A%	
1-2	-	-	-	-	3	1,5	
3-4	-	-	-	-	5	2	
5-6	1	1,5	6	4	4	2	
7-8	9	27,5	4	14	-	-	
9	1	0,5	-	-	-	-	
X	_	-	3	1,5	1	0,5	
Total	11	29,5	13	19,5	13	6	

Legend:No. sp-number of species,

A-cover%

Regarding the species' nitrogen requirements, we have: 6 nitrogen-fugitive species, 3 moderately nitrophilic species and 3 indifferent species, one medium-

nitrophilic species and one nitrophilic species. Taking into account the cover, the character of the phytocenosis is nitrogen-fugitive (table 5).

Table 5

Plant requirements for nitrogen content

Interval	Number of species	Coverage%
1-2	6	32
3-4	3	8
5-6	1	0.5
7-8	1	0.5
9	-	-
X	3	6
I	-	-
Total	14	47

Regarding the species' requirements for soil reaction, it is found that we have 6 alkaliphilic species, 4 neutrophilic species, 2 indifferent species, one moderately acidophilic species and one weakly acidophilic species. In the case of general cover, the character of the phytocenosis is

alkaliphilic (table 6).

Table 6

D1 .			C	• • •	. •
Dlant	roguiro	monto	tor	COL	ranation
FIAIII	160000	HICHES.	101	SOIL	reaction
	1 0 0 0 111 0				

Interval	Number of species	Coverage%
1-2	-	-
3-4	1	0.5
5-6	1	5
7	4	2
8-9	6	38
X	2	1
I	-	-
Total	14	60.5

In the second plot, from this body, the type of grassland *Stipa pennata* – *Koeleria macrantha* was identified, present on a land with a slope of 20-25% and a Southern exposure. The general vegetation

coverage of the phytocenosis is 75%, the woody vegetation coverage is 2-4%, and the one with molehhils is 1-2%. The degree of vegetation consumption is 30% (table 7, figure 4).

Fig. 4 Photo of the pasture of the Tiur origin _2

Table 7

C1 1.	1.4.	C 41	Ω 1 $^{\circ}$.	Tr. 1 .	4 2
Stationary	conditions /	of the	Uharsia		nastiire /
Stationar	Comunicions	or the	Obarşıa	I IUI UIUI	pastare 2

Survey code	Obârșia Tiurului _2
Locality	OBÂRȘIA TIURULUI
Grassland plot	Obârșia Tiurului
Altitude (m)	407
Slope (°)	20-25
Exposition	S
Land use	Pășune
Grassland type	Stipa pennata – Koeleria macrantha

General cover (%)	75
Wooden vegetation cover (%)	2-4
Fresh molehills (%)	1-2
Erosion (%)	2-3
Consumption rate (%)	30

In the floristic composition of the Stipa pennata - Koeleria macrantha grassland type, Poaceae have the largest share in the canopy, with an average participation of 47.5%. Plants from other botanical families (AFB) are present in a proportion of 24.5%, species from family Fabaceae have coverage of 1.5%, and species from the Cyperaceae – Juncaceae family are absent from the vegetal cover. The phytocenosis of the Stipa pennata – Koeleria macrantha grassland type has 18 species in its floristic composition. Among the Poaceae, in addition to the dominant species, Brachypodium pinnatum also appears, with 5% coverage. Among the plants from other botanical families, the following species stand out: Adonis vernalis (17.5%),Veronica austriaca, Achillea millefolium, Agrimonia eupatoria, etc., each with a share of 0.5% presence (table 8).

Table 8

Floristic composition of the type of grassland *Stipa pennata – Koeleria macrantha* and specific requirement on ecological, agronomic and anthropogenic (B - BioForm, T - temperature, U - humidity, R - soil reaction, N – nutrition, C - tolerance of mowing, P - tolerance of grazing, S - tolerance of crushed, OBF-other botanical family)

	Ecological Agronomical		~ .	_	_						
	indexes			indexes			Species	Coverage	Is	Is*%	
\mathbf{L}	T	U	R	N	RC	RP	RCA				
								Poacee	47.5		
6	5	4	7	4	3	6	6	Brachypodium pinatum	5	1	5
7	6	3	7	2	-	-	1	Koeleria macranta	17.5	X	0
6	X	5	X	X	9	8	8	Poa pratensis	0.5	4	2
8	7	2	8	2	-	-	-	Stipa pennata	25	X	0
								Fabacee	1.5		
8	7	2	7	2	-	-	-	Astragalus	0.5	1	0.5
								monspensulanus			
7	6	3	5	2	-	-	-	Cytisus albus	0.5	X	0
7	X	4	7	4	6	4	4	Lotus corniculatus	0.5	4	2
								OBF	24.5		
8	X	4	X	5	7	4	5	Achillea millefolium	0.5	2	1
7	6	3	7	1	-	-	-	Adonis vernalis	17.5	X	0
7	6	4	8	4	3	4	3	Agrimonia eupatoria	0.5	X	0
7	6	X	7	X	4	4	4	Convolvolus arvense	0.5	3	1.5
9	7	3	8	4	-	-	-	Eryngium campestre	0.5	X	0

7	X	5	X	6	-	-	-	Fragaria vesca	0.5	1	0.5
7	X	4	8	3	4	8	8	Plantago media	0.5	1	0.5
6	6	6	7	5	8	4	5	Potentilla reptans	0.5	X	0
8	6	3	7	3	ı	-	1	Salvia nemorosa	0.5	X	0
8	6	3	6	3	ı	-	1	Thymus glabrescens	0.5	X	0
8	7	2	8	1	ı	-	1	Veronica austriaca	2.5	-	0
								Σ	74	-	13
								Număr specii	18		

From the point of view of fodder value, the type *Stipa* pennata - Koeleria macrantha, belongs to class X, a category

unsuitable for grazing and supports a load of 0.20 LU/ha (table 9).

Table 9 Classification of the grassland type Stipa pennata - Koeleria macrantha

Improvement coefficient for			Note of	The	The	Grazing
Patoral	Cover with	Woody	l .	grassland	category of	capacity
value	molehills	vegetation cover	improving	class	grassland	(LU/ha)
0.13	1	1	10	X	Improper	0.20

The light requirements of the plants determine the following structure: 11 heliophiles species, 3 meso-heliophilous species and one extremely heliophilous species. The heliophilous character of phytocenosis is evident from the coverage. The temperature requirements determine following division: 7 mesothermal species, 5 indifferent species and 3

thermophilic species, and according to the degree of coverage it is evident that the phytocenosis has a mesothermal character. Depending on the humidity requirements, the species are structured as follows: 9 mesoxerophilous species, 3 mesophilic species, 2 xerophilous species and one indifferent species (table10).

Table 10 Plant requirements for ecological factors

Interval	Light		Tempera	ture	Humidity		
Interval	No. sp.	A%	No. sp	A%	No. sp.	A%	
1-2	-	-	-	-	2	3	
3-4	-	-	-	-	9	9	
5-6	3	6	7	8	3	1,5	
7-8	11	7,5	3	3,5	-	-	
9	1	0,5	-	-	-	-	
X	-	-	5	2,5	1	0,5	
Total	15	14	15	14	15	14	

The species' requirement for nitrogen content determines the

following structure: 6 moderately nitrophilic species, 4 nitrogen-fugitive species, 3 moderately

nitrophilic species and 2 indifferent species. The character of the

phytocenosis is nitrogen-fugitive (table 11).

Plant requirements for nitrogen content

Table 11

Interval	Number of species	Coverage%	
1-2	4	28.5	
3-4	6	7.5	
5-6	3	1.5	
7-8	-	-	
9	-	-	
X	2	1	
I	1	17.5	
Total	16	56	

The plant requirements for soil reaction determined the following structure: 5 alkaliphilic species, 5 neutrophil species, 3

indifferent species and 2 weakly acidophilic species. The character of the phytocenosis is alkaliphilic (table 12).

Plant requirements for soil reaction

Table 12

Interval	Number of species	Coverage%		
1-2	-	-		
3-4	-	-		
5-6	2	1		
7	5	7		
8-9	5	29		
X	3	1.5		
I	1	17.5		
Total	16	56		

Effective monitoring of the species Adonis vernalis

In all 32 plots of Plot 1, *Adonis vernalis* individuals were identified. The least number was one plant/25 m^2 , and the most was 165 plants/25 m^2 . The variability within our experience is very high (CV = 0.84), and the coefficient of variability indicates that the median is representative. The median in this

plot was 49 individuals, and the mean was 63. A moderately asymmetric distribution (Skuness = 0.44) is observed, and the skewness (Kurtosis = -1.14) is platokurtic (table 13).

Table 13 Abundance of the species *Adonis vernalis* (no. of individuals/25m²; Plot 1)

The distance of the species flavours verticules (no. of marviadals, 25 m; 110t 1)								
PLOT 1								
1	1	1	14	94	115	110	156	
7	16	53	92	165	124	105	154	
4	16	40	55	129	121	96	93	
9	11	8	24	44	49	49	47	
		ST	ATISTIC	S				
Minim		1						
Maxim				165				
CV				0.84				
Median				49				
Average				62.59				
The vaulting	-1.14							
Asymmetry	0.44							
Standard deviation				52.69				

In all variants of Plot 2, Adonis vernalis individuals were identified. The least number was 5 plants/25 m^2 , and the most was 197 plants/25 m^2 . The variability within our experience is very high (CV = 0.73), and the coefficient of variability indicates that the median

is representative. The median in this plot was 80 individuals, and the mean was 83. A moderately asymmetric distribution (Skuness = 0.22) is observed, and the kurtosis (Kurtosis = -1.30) is platokurtic (table 14).

Table 14 Abundance of the species *Adonis vernalis* (no. of individuals/25m2: Plot 2)

Tioundance of the species retorns verticus (no. of marviadus, 25 m2, 1 tot 2)									
PLOT 2									
7	5	25	53	92	133	126	166		
34	30	33	102	145	142	121	132		
9	7	20	45	119	173	183	197		
7	9	49	59	75	85	127	138		
	STATISTICS								
Minim		5							
Maxim				197					
CV				0.73					
Median				80					
Average				82.75					
The vaulting	-1.30								
Asymmetry		0.22							
Standard deviation			•	60.57			•		

Results of monitoring flights of the species *Adonis vernalis*

Following the flights carried out in April 2023, it was found that the

plants can be easily identified from the images taken from heights of 25 m and 30 m (figure 5). From the images from 40 - 60 m, the plants can only be identified if the photo is

enlarged (with Zoom) (figure 6). Above 60 m (60 - 120 m), *Adonis vernalis* individuals are difficult to distinguish and with a high degree

of error (figure 7). These things were observed in both plots.

Fig. 5 Original drone photo (25m)

Fig. 6 Original drone photo (50 m)

Fig. 7 Original drone photo (100 m)

CONCLUSIONS

Following field studies, 2 types of grassland were identified:

- the *Stipa pennata* type *Festuca rupicola* has a heliophilic, mesothermal, mesoxerophilic, nitrogen-loving, alkalinophilic character;
- the *Stipa pennata* type *Koeleria macrantha* has a heliophilic, mesothermal, mesoxerophilic, nitrogen-loving and alkalinophilic character.

Both types are part of the X-th grassland class, a category unsuitable for grazing and support a load of 0.20 LU/ha.

The abundance of the *Adonis* vernalis species differs from one plot to another, presenting a high variability. Thus, the presence of the species was on average 63 plants/25m² in Plot 1 and 83 plants/25m² in Plot 2.

Photographing the plots and counting *Adonis vernalis* individuals from the office can only be done if the drone flights are made at a height of 25 - 30 m.

The plant can be successfully harvested and used as a medicinal plant because it is present in a fairly large proportion in grassland

REFERENCES

- 1. Corcoz, L., Păcurar, F., Pop-Moldovan, V., Vaida, I., Pleșa, A., Stoian, V., & Vidican, R. (2022). Long-term fertilization alters mycorrhizal colonization strategy in the roots of agrostis capillaris. Agriculture, 12(6), 847.
- 2. Denisow, B., Wrzesien, M. and Cwener, A., 2014. Pollination and floral biology of Adonis vernalis L.(Ranunculaceae)-a case study of threatened species. Acta Societatis Botanicorum Poloniae, 83(1).
- 3. Gaga, I., Pacurar, F., Vaida, I., Plesa, A., & Rotar, I. (2022). Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants, 11(15), 1975.
- 4. Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C., & Wiezik, M. (2013). European grassland ecosystems: Threatened hotspots of biodiversity. Biodiversity and Conservation, 22(10), 2131-2138. http://doi.org/10.1007/s10531-013-0537-x.
- 5. Kent, M., (2012). Vegetation description and data analysis, a paractical approach, second edition, ISBN 978-0-471-49093-7.
- 6. Kovacs, JA, (1979). Indicatorii biologici, ecologici și economici ai 563 florei pajiștilor, Ministerul Agriculturii și Industriei Alimentare, București.
- 7. Niculescu, M., Prioteasa, A.M., Grecu, F., Cojoacă, D.F. And Niculescu, L., 2023. Coenology, Distribution And Ecology Of The Species Adonis Vernalis L. In The South-West Of Oltenia, Romania. "Annals Of The University Of Craiova-Agriculture Montanology Cadastre Series", 53(2), Pp.127-132.

- 8. Păcurar, F., Balazsi, Á., Rotar, I., Vaida, I., Reif, A., Vidican, R., & Sângeorzan, D. (2020). Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape. Romanian Biotechnol. Lett, 25, 1128-1135.
- 9. Păcurar, F., Rotar I., (2014). Metode de studiu și interpretare a vegetației pajiștilor, Editura Risoprint, Cluj-Napoca.
- 10. Pârvu, M., Pârvu, A. E., Roșca-Casian, O., Vlase, L., & Groza, G. (2010). Antifungal activity of Allium obliquum. J. Med. Plants Res, 4(2), 138-141.
- 11. Rotar, I., Vaida, I., & Păcurar, F. (2020). Species with indicative values for the management of the mountain grasslands. Romanian Agricultural Research, (37).
- 12. Sângeorzan, D. D., Păcurar, F., Reif, A., Weinacker, H., Rușdea, E., Vaida, I., & Rotar, I. (2024). Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing, Remote Sensing, 16(11), 2012.
- 13. Vaida, I., Păcurar, F., Rotar, I., Tomoș, L., & Stoian, V. (2021). Changes in diversity due to long-term management in a high natural value grassland. Plants, 10(4), 739.
- 14. Vaida, I., Păcurar, F., Rotar, I., Tomoș, L., & Stoian, V. (2021). Changes in diversity due to long-term management in a high natural value grassland. Plants, 10(4), 739. I Vaida, F Păcurar, I Rotar, L Tomos, V Stoian
- 15.*** Primăria Comunei Blaj www.primariablaj.ro
- 16.***www.floraweb.de
- 17.*** Planul Național Strategic https://apia.org.ro/planul-national-strategic-2023-2027-pns-al-romaniei/

STUDIES ON THE ECOLOGICAL RESTORATION OF GRASSLAND ECOSYSTEMS AT THE PĂLTINIS EXPERIMENTAL STATION

Claudiu ŞERBAN, Ioan ROTAR, Florin PĂCURAR, Ioana GHEȚE, Anca PLEȘA

*Faculty of Agriculture. Department of Plant Crops. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manăstur street, 3-5, 400372, Romania.

* Corresponding author, e-mail: ioana.vaida@usamvcluj.ro

Abstract

The restoration of degraded grassland is a necessary in Romania. Different management of a grassland, such as mulching, can lead to major changes in its composition. The research took place in the Cindrel Mountains, in Păltiniş, on two experimental plots. This paper shows how in just 2 years of mulching the floristic composition changes, the type of grassland being different, at the same time, it is shown that species are disappearing from the conopy. The information provided by species with indicator value can overlap and, in this way, valuable information can be obtained regarding the stationary conditions of a particular phytocenosis and the intensity of management.

Keywords: Mulch, Cindrel Mountains, restoration, Paltinis, biodiversity of grasslands

INTRODUCTION

Romania's Mountain area has a rich, valuable and relatively well-preserved natural base. Romania's Mountains host some of the largest expanses of primary and old-growth forests and traditionally managed grasslands in Europe and are important reservoirs biodiversity. Together climate change, depopulation and abandonment in mountain areas and mountain farming in Romania have endangered the balance, health, productivity and biodiversity of traditionally managed grassland systems, which depend on the interaction between humans. domestic animals and wildlife. In this context. new politics a governance is urgently needed to reverse the decline and conserve the management grassland of

ecosystems combining by traditional practices with modern technologies evidence and (Horablaga et. al 2023; Yang et. al, Grassland ecosystems 2024). (HNVs) need a clearer picture, elucidated which can be analyzing indicators of agricultural management combined with those of biodiversity assessment (Krautzer and Pötsch, 2009; Óhuallacháin et 2018). In Eastern Europe, extensively managed semi-natural grasslands are considered hotspot of biodiversity, some of them even of international importance, competing with habitat diversity that hold world records in the number of species per unit area (Wilson et al., 2012). These, for the most part, have been maintained by agricultural practices, thus their

phytodiversity has developed over centuries in close correlation with the type of management applied (Habel et al., 2013; Rotar et al., 2012). Ecological reconstruction of degraded grasslands is a topic of major importance in the context of biodiversity conservation restoration of natural ecosystems. In this regard, the present work focuses on the ecological reconstruction of grasslands at the **Paltinis**

MATERIAL AND METHOD

Our studies were carried out the **Păltinis** resort. at experiments were located on the Noth-Est ridge of the Cindrel Mountains, near the resort Paltinis, at an altitude of 1.348 m. The soils in the area are submesosotrophic and brownacidic. **Mountains** The Cindrel cover an area of about 900 km² with a maximum altitude of 2244 m (Cindrel Peak). The surface of the Cindrel Mountains forms a triangle with the apex towards Vârful Cindrel and two of the sides formed by the Sadu River, tributary of the Olt, which separates them from the Lotrului Mountains and the second side by the Frumoasa River and then by the Sebes River, which separates them from the Sureanu Mountains (Anghel și Donită, 1980).

The study was conducted on two experimental plots of abandoned grassland located within the research station, one of which was subjected to mulching treatment Experimental Station, with the main aim of the effect of mulching on abandoned grasslands. Grassland degradation is a common phenomenon in grassland ecosystems, and the aim of this study is to identify the most techniques effective for their restoration in order to improve the quality and diversity of vegetation in the study area.

in 2021. Floristic studies were carried out using the geobotanical (phytosociological) method, which involves conducting phytocenological surveys (relevees) in the field.

processing, the obtained was entered into the form of two matrices. In the first matrix the vegetation data were entered and the second matrix the experimental variants were coded. program has tools classification and ordination of vegetation and various randomization tests. The program also has possibilities for graphical representation of the results. The details of this program have been described by several authors (Mccune, 2002 and Peck, 2010).

Floristic data processing was performed with PC-ORD, version 7. For processing, the data obtained were entered as two matrices. In the first matrix the vegetation data were entered and in the second matrix the experimental variants were coded.

The program has tools for classification and ordination of vegetation and various randomization tests. The program also has possibilities for graphical

representation of the results. The details of this program have been described by several authors (Mccune, 2002 and Peck, 2010).

RESULTS AND DISCUSSIONS

Following the classification using the PC-ORD program graphical (version 7). representation (dendogram; fig. 1) was produced, which records how the floristic surveys are classified, but also indicates the distance between them. According to the literature, the level at which the dendogram will be cut, is where the resulting groups, make phytosociologically and ecologically justified sense, but also at a level at which as much information as possible remains (Peck, 2010). The floristic survey data were categorized by distance index. Euclidean.

After analyzing the floristic composition, we considered that cutting at 70 is the most optimal solution in our case, as it makes phytosociological, ecological and agronomic sense. Thus, two distinct clusters (Fig. 2) were identified, consisting following of the grassland types: the Festuca rubra type (cluster 1) and the Festuca rubra - Agrostis capillaris type (cluster 2). The formation of the clusters because of mulching shows that it has produced major changes in the vegetation cover. Thus, Agrostis capillaris is the dominant species under mulching conditions.

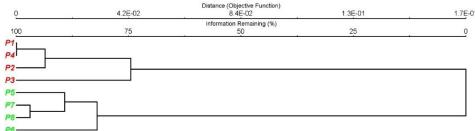


Fig. 1 Dendrogram of floristic composition classification

After ordination with principal coordinates analysis (PcoA), it was found that the floristic surveys were grouped according to similarity of floristic composition, stationary conditions and management applied (Fig. 2).

The phytocenosis of abandonment is represented by the *Festuca rubra* type, and with mulching, it evolves into the *Festuca rubra* - *Agrostis capillaris* type (table 1; T = -4.450; A = 0.631; p = 0.005).

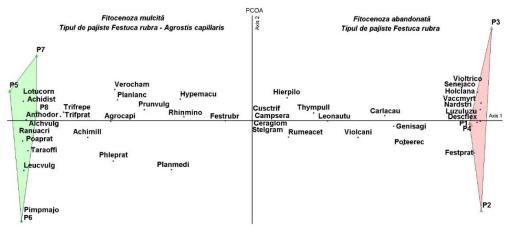


Fig. 2 Ordering phytocenosis according to management applied

	LEGEND/ABBREVIATIONS							
Agrocapi	Agrostis capillaris	Hierpilo	Hieracium pilosella					
Anthodor	Anthoxanthum odoratum	Нуретаси	Hypericum maculatum					
Descflex	Deschampsia flexuosa	Leonautu	Leontodon autumnalis					
Festprat	Festuca pratensis	Leucvulg	Leucanthemum vulgaris					
Festrubr	Festuca rubra	Pimpmajo	Pimpinella major					
Holclana	Holcus lanatus	Planlanc	Plantago lanceolata					
Nardstri	Nardus stricta	Planmedi	Plantago media					
Phleprat	Phleum pratense	Poteerec	Potentilla erecta					
Poaprat	Poa pratensis	Prunvulg	Prunella vulgaris					
Luzuluzu	Luzula luzuloides	Ranuacri	Ranunculus acris					
Genisagi	Genista sagitallis	Rhinmino	Rhinanthus minor					
Lotucorn	Lotus corniculatus	Rumeacet	Rumex acetosella					
Trifprat	Trifolium pratense	Senejaco	Senecio jacobea					
Trifrepe	Trifolium repens	Taraoffi	Taraxacum officinalle					
Achidist	Achillea distans	Thympull	Thymus pullegioides					
Achimill	Achillea millefolium	Vaccmyrt	Vaccinium myrtillus					
Alchvulg	Alchemilla vulgaris	Verocham	Veronica chamaedrys					
Carlacaulis	Carlina acaulis	Violcani	Viola canina					
		Violtric	Viola tricolor					

Table 1
Comparison between the floristic composition of the experimental variants (MRPP)

Comparison between the noristic composition of the experimental variants (WKI I)								
Treatments	T	A	р	Significance				
Mulched vs. untreated or mulch	-4.450	0.631	0.005	**				

T – T-test, A – group homogeneity, p - statistical significance Significance: *** P<0.001; ** P<0.01; * P<0.05; ns – not significant

Mulching caused major changes in floristic composition

which can be explained in a proportion of 99%, of which 97.7%

of the observed phenomenon can be explained by axis 1 ordination and

0.013% by axis 2 ordination (table 2)

Table 2

The importance of axes

Axis	Participation rate (r)	Cumulative
1	0.977	0.977
2	0.013	0.990

r - the coefficient of determination for the correlations between ordering distances and original distances in n-dimensional space

Some species (21) correlate with ordination axis 1 (negative zone) and axis 2 (positive zone), which means that they are favored by applied management - mulching (Table 3; Fig. 2). These include: capillaris (p<0.001). Agrostis Anthonxantum odoratum (p<0,001), Trifolium (p<0.001), pratense Achillea distans (p<0.001). (p<0,001),Plantago lanceolata Ranunculus acris (p<0,001) etc. Other species (16) correlate with axis 1 ordination (positive zone) and axis 2 (negative zone), they are favored by meadow abandonment, Hieracium pilosella such as: acetosella (p<0.001), Rumex (p<0.001) etc. The application of mulching caused the disappearance of some species and the appearance of others. The following species disappeared from the grassland: Deschampsia flexuosa, Festuca pratensis, Senecio jacobea, Viola tricolor and the following species were installed: **Anthoxantum** odoratum. Poa pratensis. Alchemilla vugaris, Leucanthemum vulgare (table 3). Indicator species are those that provide valuable information to the researcher on environmental conditions, application of maintenance and use, level of anthropogenic influence,

etc. The information provided by indicator species can overlap and, in this way, valuable information can obtained on the seasonal conditions ofparticular a phytocenosis and the intensity of management. Once the status of the phytocenoses is established. practical management strategies can developed, including maintenance and works use appropriate for the purpose. For example, indicator species can be particularly useful for High Nature Value (HNV) grasslands, for which a clear picture and appropriate grassland management needs to be established (Krautzer and Pötsch. 2009). In our experience with mulch, based on the analysis of indicator species, it can be seen that the grassland type Festuca rubra -Agrostis capillaris has 10 indicator species in its floristic composition (Table 4). The majority of species in this group are oligotrophs and oligomotrophs. *Festuca* rubra (22.25%) has the highest coverage, followed by Agrostis capillaris (18.69%),Achillea millefolium (3.13%), etc., and Achillea distans (0.5%), Ranunculus acris (0.5%), etc., have the lowest coverage.

Table 3
Correlation of species with ordination axes

		Axis 1	Axis 2		
Species	r	Significance	r	Significance	
Agrostis capillaris	-0.982	***	-0.011	ns	
Anthoxanthum odoratum	-0.999	***	0.016	ns	
Deschampsia flexuosa	0.958	***	-0.006	ns	
Festuca pratensis	0.759	***	-0.395	*	
Festuca rubra	-0.999	***	0.016	ns	
Holcus lanatus	0.770	***	0.351	*	
Nardus stricta	0.959	***	0.170	ns	
Phleum pratense	-0.519	**	-0.541	**	
Poa pratensis	-0.786	***	-0.250	ns	
Luzula luzuloides	0.891	***	-0.023	ns	
Genista sagitallis	0.860	***	-0.121	ns	
Lotus corniculatus	-0.584	**	0.179	ns	
Trifolium pratense	-0.953	***	0.076	ns	
Trifolium repens	-0.937	***	0.151	ns	
Achillea distans	-0.584	**	0.179	ns	
Achillea millefolium	-0.867	***	-0.316	*	
Alchemilla vulgaris	-0.999	***	0.016	ns	
Carlina acaulis	0.755	***	0.105	ns	
Hieracium pilosella	0.278	ns	0.655	***	
Hypericum maculatum	-0.360	*	0.389	*	
Leontodon autumnalis	0.999	***	-0.016	ns	
Leucanthemum vulgaris	-0.638	***	-0.497	**	
Pimpinella major	-0.385	*	-0.600	**	
Plantago lanceolata	-0.769	***	0.426	*	
Plantago media	-0.360	*	-0.781	***	
Potentilla erecta	0.772	***	-0.434	*	
Prunella vulgaris	-0.465	**	0.171	ns	
Ranunculus acris	-0.999	***	0.016	ns	
Rhinanthus minor	-0.627	***	0.130	ns	
Rumex acetosella	0.480	**	-0.780	***	
Senecio jacobea	0.770	***	0.351	*	
Taraxacum officinalle	-0.721	***	-0.345	*	
Thymus pullegioides	0.770	***	0.351	*	
Vaccinium myrtillus	0.908	***	0.253	ns	
Veronica chamaedrys	-0.621	***	0.506	**	
Viola canina	0.467	**	-0.265	ns	
Viola tricolor	0.770	***	0.351	*	

r - correlation coefficient, Semnif. - Significance; Sign: *** P<0,001; ** P<0,01; * P<0,05; ns (0) P<0,10

The species *Anthoxanthum* Alchemilla odoratum. vulgaris. Leucanthemum vulgare, Ranunculus acris, Taraxacum officinale (100,0) have the highest indicator value (INDVAL). This is due to the maximum constancy (K) these species reach (K - 12). Pimpinella major species shows the lowest indicator value of 25%. The poor indicator value of these species is determined by their presence also in (different in constancy and participation) in the other phytocenoses.

In the abandoned grassland, based on the analysis of indicator species, the Festuca rubra grassland type has 6 indicator species in its floristic composition (Table 4). Most of the species in this

group are oligotrophic and oligomeso-oligotrophic. *Festuca rubra* has the highest coverage (17.5%), followed by *Nardus stricta* (5.75%), etc., and *Vaccinium myrtillus* (3.13%) has the lowest.

Deschampsia flexuosa, Nardus stricta. Luzula luzuloides and Vaccinium myrtillus have the highest indicator value (INDVAL) (100.0). This is due to the maximum constancy (K) achieved by these species (K - 12). Campanula serata, Cerastium glomeratum, Cuscuta have the trifolii. etc. weakest indicator value of 50%. The weak indicator value of these species is determined by their presence also in the (different in constancy and participation) ofthe other phytocenoses.

Table 4 Indicator species for applied treatments

Specie	T	INDVAL	Media	Dev. Std.	р	Semnif.
Deschampsia flexuosa	1	100	42.3	18.15	0.032	*
Festuca pratensis	1	75	39.2	14.56	0.142	ns
Holcus lanatus	1	75	39.4	14.67	0.144	ns
Nardus stricta	1	100	43	17.43	0.032	*
Luzula luzuloides	1	100	43.9	16.96	0.032	*
Genista sagitallis	1	81.4	61	8.23	0.057	*
Campanula serata	1	50	50	0.71	1.000	ns
Carlina acaulis	1	80	49.9	12.15	0.139	ns
Cerastium glomeratum	1	50	50	0.71	1.000	ns
Cuscuta trifolii	1	50	50	0.71	1.000	ns
Hieracium pilosella	1	57.1	59.3	5.16	1.000	ns
Leontodon autumnalis	1	66.7	54.2	4.73	0.032	*
Potentila erecta	1	84.2	58.6	12.99	0.117	ns
Rumex acetosa	1	58.3	54.3	4.69	0.485	ns
Senecio jacobea	1	75	39.4	14.67	0.144	ns
Stellaria graminea	1	50	50	0.71	1.000	ns

Thymus pullegioides	1	63.6	55.8	3.29	0.144	ns		
Vaccinium myrtillus	1	100	43.9	16.99	0.032	*		
Viola canina	1	56.2	41.3	18.35	0.482	ns		
Viola tricolor	1	75	39.4	14.67	0.144	ns		
Agrostis capillaris	2	81	59.3	7.79	0.032	*		
Anthoxanthum odoratum	2	100	41.3	18.67	0.032	*		
Festuca rubra	2	56	51.5	1.82	0.032	*		
Phleum pratense	2	80	58.5	14.16	0.282	ns		
Poa pratensis	2	75	39.6	14.87	0.149	ns		
Lotus corniculatus	2	50	28.6	18.56	0.428	ns		
Trifolium pratense	2	92	63.9	9.67	0.032	*		
Trifolium repens	2	92	63.7	9.61	0.032	*		
Achillea distans	2	50	28.6	18.56	0.428	ns		
Achillea millefolium	2	86.2	63.7	7.99	0.032	*		
Alchemilla vulgaris	2	100	41.3	18.67	0.032	*		
Hypericum maculatum	2	66.7	66.7	0.94	1.000	ns		
Leucanthemum vulgare	2	100	47.8	17.08	0.032	*		
Pimpinella major	2	25	25	0.35	1.000	ns		
Plantago lanceolata	2	80	62.8	7.05	0.143	ns		
Plantago media	2	68	66	10.24	0.725	ns		
Prunella vulgaris	2	72.7	61.8	12.43	0.563	ns		
Ranunculus acris	2	100	41.3	18.67	0.032	*		
Rhinanthus minor	2	65.2	57.6	4.80	0.276	ns		
Taraxacum officinale	2	100	44.4	19.05	0.032	*		
Veronica chamaedrys	2	80	61.2	11.95	0.286	ns		
Levend: T - applied treatment: INDVAL - indicator value: N - species preference to nitrogen: ADm - abundance -								

Legend: T - applied treatment; INDVAL - indicator value; N - species preference to nitrogen; ADm - abundance - dominance - mean; Dev. Std - standard deviation; Signs: *** p<0.001; ** p<0.01; ** p<0.05; ns - not significant

CONCLUSIONS

The Cindrel Mountains are characterized by dome-shaped long ridges, mostly covered with pastures, which have favored shepherding, the main occupation of the people living on the margins. The soil scattered throughout the massif is low fertility and acidic, with a wet and cool climate.

The effect of mulching on the grassland of *Festuca rubra* was seen

from the second year after application.

The Festuca rubra – Agrostis capillaris type of grassland was established on the mulched plot, which is agronomically superior to the Festuca rubra type.

Mulch can be successfully used in the reconstruction of abandoned grassland in the Cindrel Mountains.

REFERENCES

- 1. Anghel Gheorghe, N. Donita, 1980, Etajarea vegetației lemnoase și ierboase în teritoriul carpatic,. SCPCP Măgurele-Brașov, pag. 47-56.
- Corcoz, L., Păcurar, F., Pop-Moldovan, V., Vaida, I., Pleşa, A., Stoian, V., & Vidican, R. 2022. Long-term fertilization alters mycorrhizal colonization strategy in the roots of *Agrostis capillaris*. Agriculture, 12(6), 847.
- 3. Gaga, I., Pacurar, F., Vaida, I., Plesa, A., & Rotar, I. 2022. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants, 11(15), 1975.
- Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C., & Wiezik, M. (2013). European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and conservation, 22, 2131-2138.
- 5. Horablaga, M., Cojocariu, L., Bostan, C., Copacean, L., Istrate–Schiller, C., Rechitean, D., & Tomuta, R. 2023. Transformation of grasslands into forests in Banat Mountains, between 1990 and 2023. LIFE Science And Sustainable Development, 4(2), 72-79.
- 6. Krautzer, B., and E. M. Pötsch. "The use of semi-natural grassland as donor sites for the restoration of high nature value areas." (2009): 478-492.
- 7. McCune, B. 2006. Nonparametric multiplicative regression for habitat modeling. Oregon State University, Oregon.
- 8. ÓhUallacháin, D., Sheridan, H., Keosh, B., & Finn, J. A. (2018). Agrienvironment measures for grassland habitats: halting the decline of biodiversity, or a missed opportunity
- 9. Păcurar, F., Balazsi, Á., Rotar, I., Vaida, I., Reif, A., Vidican, R., & Sângeorzan, D. (2020). Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape. Romanian Biotechnol. Lett, 25, 1128-1135.
- 10. Peck J., (2010) Multivariate analysis for community ecologists: step-by-step using PC-ORD. Gleneden Beach, Oregon, USA: MJM Software Design,162 pp.
- Rotar, I., Pacurar, F., Vidican, R., & Bogdan, A. (2012). Impact of grassland management on occurrence of Arnica montana L. Grassland

 –a European Resource.
- 12. Rotar, I., Vaida, I., & Păcurar, F. (2020). Species with indicative values for the management of the mountain grasslands. Romanian Agricultural Research, (37).

- 13. Sângeorzan, D. D., Păcurar, F., Reif, A., Weinacker, H., Rușdea, E., Vaida, I., & Rotar, I. (2024). Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. Remote Sensing, 16(11), 2012.
- 14. Vaida, I., Păcurar, F., Rotar, I., Tomoș, L., & Stoian, V. (2021). Changes in diversity due to long-term management in a high natural value grassland. Plants, 10(4), 739.
- 15. Wilson, Thomas M., and Hastings Donnan, eds. A companion to border studies. Hoboken, NJ: Wiley Blackwell, 2012.
- 16. Yang, M., Wang, Z., Zhang, Z., Chen, P., Zhao, D., Cheng, E., & Yan, Y. (2024). Pathways for ecological restoration of territorial space based on ecosystem integrity: A case study of approach to protecting and restoring mountains, rivers, forests, farmlands, lakes, and grasslands in Beijing, China. Ecological Frontiers, 44(6), 1214-1223.

THE PRATOTECHNICAL CONDITIONS IN THE BUCEGI MOUNTAINS WHERE THE NEW VARIETY OF *PHLEUM PRATENSE* "CARPATICA" WAS CREATED

Teodor MARUŞCA*, Monica A. TOD**, Paul M. ZEVEDEI*, Marcela M. DRAGOŞ*, Vasile MOCANU*

*Research-Development Institute for Grasslands, Braşov **email:monica.tod@pajisti-grassland.ro

Abstract

In 1995, a three-factor experiment (fertilization, grassy carpet type, calcium amendment) was set up in the Bucegi Massif at an altitude of 1800 m, with outstanding results. After 26 years, Phleum pratense sown in a mixture of 40% participation survived almost 26% in the over-sown, amended and chemically fertilized variant, a fact less known in the literature. Mineral fertilization stimulated Phleum pratense species by 45-46% more than organic fertilization by hoeing. The main agrochemical factor on which the participation of Phleum pratense species in the grass carpet depended was the soil reaction after amendment. After 26 years (2018-2022) the participation of the Phleum pratense species in mineral fertilization is maintained at 25.6% on the amended soil after overseeding and 8.4% - respectively 3 times less after reseeding. In these extreme hydrothermal conditions and pratotechnical factors, 250 clones of Phleum pratense selected by "nature" at 1800 m were taken from the experimental field, which were introduced for 3 years in the improvement process at 600 m altitude at ICDP Braşov, from which 8 clones were selected for polycross the variety "Carpatica" which can achieve 12.7 t/ha of good quality DM t/ha, according to ISTIS Bucharest tests.

Keywords: improvement, subalpine grassland, variety, *Phleum pratense*, Carpatica", breeding process

INTRODUCTION

The creation of new varieties of perennial grasses for extreme climatic conditions and soils or substrates with poor physical and chemical properties is an essential objective both for the improvement of degraded grasslands and for ecological reconstruction due to natural factors or anthropogenic

activities. In the area of the high mountains, the assortment of perennial grasses with good fodder quality and longevity is quite limited (Tod M. et all, 2015). The species of the spontaneous flora better adapted to the environmental conditions of the upper, subalpine and alpine floors such as *Festuca*

rubra, Festuca nigrescens and Festuca airoides as initial breeding material have lower production and fodder quality performances than the better known species from the lower mountain area, hills and plains (Varga P. et all, 1998). Thus, the problem of identifying more productive and long-lived grasses outside the spontaneous flora of the

high mountains was raised. During a long-term experience in the Bucegi Massif, the *Phleum pratense* species stood out for its longevity and quality, from which a new variety was created with special properties for improving meadows located at high altitudes, a problem that we are continuing to develop.

MATERIAL AND METHOD

The studies on the initial material for breeding activity were carried out at the "Teodor Maruşca" Mountain Grassland Research Base in Blana Bucegi, located at 1800 m altitude, in an experience of improving subalpine meadows degraded by *Nardus stricta* with the following:

The variants of the long-term experience (1995-2022) were:

Factor A: Fertilization

1. Mineral fertilization

Stage I: 1996 - 50 kg /ha P_2O_5 +50 kg/ha K_2O ; 1997 - 50 kg /ha P_2O_5 +50 kg/ha K_2O ; 1998 - 50 kg /ha P_2O_5 +50 kg/ha K_2O ;

 $\begin{array}{l} Stage \ II: \ 2004 \ \mbox{-} \ 150 \ kg \ \mbox{/ha} \ N + 100 \ kg \\ \mbox{/ha} \ P_2O_5 \ + 100 \ kg \mbox{/ha} \ K_2O; \ 2005 \ \mbox{-} \ 100 \\ \mbox{kg \ \mbox{/ha}} \ N; \ 2006 \ \mbox{-} \ 50 \ kg \ \mbox{/ha} \ N; \end{array}$

Stage III: 2012 - 150 kg /ha N + 100 kg /ha P₂O₅ + 100 kg/ha K₂O; 2013 - 100 kg /ha N; 2014 - 50 kg /ha N;

 $\label{eq:Stage IV: 2017 - 150 kg /ha N + 100 kg /ha P_2O_5 + 100 kg/ha K_2O; 2018 - 100 kg /ha N; 2019 - 50 kg /ha N;$

2. Mineral and organic fertilization Stage I: 1996 - 150 kg /ha N + 50 kg /ha P₂O₅+50 kg/ha K₂O; 1997 - 100 kg /ha N + 50 kg /ha P₂O₅+

50 kg/ha K₂O;

1998 - 50~kg /ha N + 50~kg /ha P_2O_5 +50 kg/ha $K_2O;$

Stage II: 2004 - Sheep night paddocking 5 nights 1 cow/ 6 m^2 + 100 kg /ha P_2O_5 ;

Stage III: 2011 - cow night paddocking 5 nights 1 cow/ 6 m 2 + 100 kg /ha P_2O_5 ; Stage IV: 2017 - cow night paddocking 5 nights 1 cow/ 6 m 2

3. Organic fertilization

Stage I: 1995 - Sheep night paddocking 1 sheep/ 1 m² 5 nights;

Stage II: 2004 - Sheep night paddocking 1 sheep/ 1 m^2 5 nights + 100 kg /ha P_2O_5 ;

Stage III: 2011 - cow night paddocking $1 \text{ cow}/ 6 \text{ m}^2 5 \text{ nights} + 100 \text{ kg}/\text{ha } P_2O_5$; Stage IV: 2017 - cow night paddocking $1 \text{ cow}/ 6 \text{ m}^2 5 \text{ nights}$.

Factor B: Grass carpet

- 1. Overseeding 1996, after total weeding (5 liters/ha Glyphosate) 1995 and harrowing (1-2 cm) and rolling;
- 2. Reseeding in 1996 after total weed control in 1995 and processing with a rolling mill (10-12 cm) before and after sowing;

Factor C: Calcium amendment

- 1. No amendment;
- 2. Amendment to 2/3 Ah (approx. 7,5 t/ha CaO)

For overseeding and reseeding, a mixture of perennial grass leguminous seeds was used, consisting of: Phleum pratense Favorit variety (40%), Festuca pratensis Transilvan variety (25%), Lolium perenne Marta variety (5%), Trifolium hybridum -Brasov local population (15%), Lotus corniculatus Livada variety (15%), species absent from the spontaneous flora to distinguish the sown grassland from the semi-natural one. It can be observed that in the grass mixture for and re-seeding, over-seeding grasses Phleum pratense, Festuca pratensis and Lolium perenne were used, species that do not exist in the spontaneous flora of the subalpine level. After annual floristic surveys in all variants of the experiment, was

perenne species from the grass carpet after 5-6 years, Festuca pratensis after 8-10 years and the long persistence of the Phleum pratense species, after 20 years from sowing, a property that led us to study it more carefully, with a view to creating a variety. 250 clones were taken from the experimental field as initial breeding material, which survived 20 years from the initial Phleum pratense seed. In these extreme conditions, it does not reach maturity for seed production, which is why it did not self-seed. The clones were further introduced into the breeding process at Research-Development Institute for Grasslands, Brasov, following the usual mass selection methods, which resulted the new variety "Carpatica".

noted the disappearance of the *Lolium*

RESULTS AND DISCUSSIONS

Following the floristic observations in the first 5 years (1996-2000), it was found that the species *Phleum pratense*, the "Favorit" variety created at the Suceava Agricultural Research

Station in 1979, from an initial 40% participation in the mixture, continues to be maintained in a high proportion in the grassy carpet (Table 1).

Table 1
Participation of *Phleum pratense* species in the grassy carpet in the first 5 years after overseeding and reseeding of *Nardus stricta* – degraded subalpine grasslands (Blana-Bucegi 1996-2000)

	Overseeding (010)			Reseeding (020)			Difference (%)	
Fertilization	NA;	A (002)	Average	NA;	Α	Average	010 -	002-001
	(001)		(010)	(001)	(002)	(020)	020	
Mineral (100)	31.5	53.8	42.7	22.3	52.1	37.7	113	197
Organic (300)	30.8	28.0	29.4	17.3	34.3	25.8	114	129
Average	31.2	40.9	36.1	19.8	43.2	31.5	115	165
Difference (%)100-300	102	192	145	129	152	146	X	X

NA - No amendment; A- amendment

Thus, the highest percentage of the *Phleum pratense* species in the sown mixture of 53.8% was achieved by overseeding (var. 010) on amended soil

(002) and mineral fertilization (100). The average effect of overseeding was 15% higher than reseeding and of calcium amendment 65% higher on the

participation of the *Phleum pratense* species in the composition of the sown mixture. Mineral fertilization (100) stimulated 45-46% more *Phleum pratense* species than organic fertilization by tillage (300). The main

agrochemical factor on which the participation of the *Phleum pratense* species in the grassy carpet depended was the soil reaction after amendment (Table 2).

Table 2
Soil reaction (pH in H2O) after 5 years of calcium amendment and total renovation systems of subalpine degraded grassland by Nardus stricta (Blana-Bucegi 2001)

	Over	seeding	g (010)	Res	seeding	(020)	Differe	ence (%)
Fertilization	NA;	A	Average	NA	A;	Average	010 -	002-
	(001)	(002)	(010)	(001)	(002)	(020)	020	001
Mineral (100)	4.75	5.35	5.05	4.70	5.50	5.10	99	115
Organic (300)	4.60	5.50	5.05	4.60	5.20	4.90	103	116
Average	4.68	5.43	5.05	4.65	5.35	5.00	101	115
Difference (%)100-300	103	97	100	102	106	104	X	X

NA - No amendment; A- amendment

In the first 5 years, the amendment (002) raised the soil pH from 4.60 to 5.35-5.50, which contributed to the increase in the participation of the species Phleum pratense by 15%. The highest participation of 52.1-53.8 of the species Phleum pratense was recorded at pH 5.35-5.50 in the amended variants (002) and the lowest of 17.3-19.8 at a pH of 4.6-4.65 in the no amended variants (001), demonstrating the efficiency of calcium amendment for this perennial grass. After 26 years (2018-2022) the participation of the Phleum pratense species in mineral fertilization (100) remains at 25.6% on fined soil (002) after overseeding and 8.4% - respectively 3 times less after reseeding (Table 3).

Table 3
Results regarding the participation of the species *Phleum pratense* in the grassy carpet (%)compared to 40% at sowing after 26 years, depending on the radical improvement method of subalpine grasslands of *Nardus stricta* (after Maruşca T., 2022)

	Over	seeding	g (010)	Re	seeding	g (020)	Difference (%)	
Fertilization	NA;	A	Average	NA;	Α	Average	010 -	002-001
	(001)	(002)	(010)	(001)	(002)	(020)	020	002-001
Mineral (100)	0	25,6	12,8	0	8,4	4,2	305	X
Organo-mineral (200)	16,0	21,2	18,6	9,4	15,0	12,2	152	143
Organic (300)	13,4	16,0	14,7	11,8	17,2	14,5	101	132
Average	9,8	20,9	15,4	7,1	13,6	10,4	148	203
		D	ifference ((%)				
100-200	X	83	145	X	170	290	X	X
100-300	X	63	115	X	205	345	X	X
200-300	84	75	79	125	115	119	X	X

NA - No amendment; A- amendment

In the no amended, mineral-fertilized variants, the species *Phleum pratense* disappeared from the grassy carpet in both sowing methods. Under the conditions of organo-mineral fertilization (200)an average participation of *Phleum pratense* was achieved, being from this point of view fertilization the best system. calcium amendment and mineral fertilization at the beginning the production of green mass per hectare will increase, correspondingly

increasing the animal load with which larger areas of grasslands degraded by *Nardus stricta* can be further grazed in more difficult to access areas. After 26 years of applying calcium amendments, it is found that the soil pH is still increasing on average on all agricultural lands (100-300) from 4.9 to 5.37, contributing to this the residual effect of calcium and the favorable effect of animal grazing in the 3-4 rounds (Table 4).

Table 4
Soil reaction (pH) after 20 years of calcium amendment and total renovation systems of subalpine Nardus stricta grasslands (Blana-Bucegi 2016)

Overseeding (010) Reseeding (020) Difference (%) Fertilization NA: Α Average NA: Α Average 010 002-001 (002)(010)020 (001)(001)(002) (020)Mineral (100) 5.7 5.3 5.05 104 115 4.8 5.25 4.8 Organo-mineral (200) 5.0 5.2 5.10 5.0 5.2 5.10 100 104 Organic (300) 4.9 5.2 5.05 5.0 5.2 5.10 99 105 Average 4.90 5.37 5.14 4.93 5.23 5.08 103 108 Difference (%) 100-200 104 97 98 104 101 X X 100-300 102 91 96 104 98 101 X X 99 200-300 98 100 100 100 100

NA - No amendment; A- amendment

The strongest effect of amendment, pH 5.3-5.7, was observed at variants with mineral fertilization (100) followed by pH 5.2 with organomineral fertilization (200) and the same with organic fertilization (300).

The pH reaction on the overseeded variants is on average 5.14 with 8% higher than on the reseeded variants.

As a first general conclusion, it can be noted that the participation of the *Phleum pratense* species is higher on variant 222 with organomineral fertilization, overseeding and calcium amendment.

The main characteristics of the Carpatica variety, a synthetic variety selected from 8 parental forms from

native mountain ecotypes, are: it is a semi-late variety, with good growth and vigor. regeneration verv resistance to diseases such as Puccinia gr., Erysipha gr., Epichloe typhina) and good resistance to the timothy fly (Amaurosoma flavipes). The growth vigor in spring is good to very good, the regeneration capacity after mowing the behavior in winter good, conditions is good to very good, the crude protein content is 15.73%, the average dry matter production achieved in the 3 years of testing, in the ISTIS network, is 12.7 t/ha. It can be cultivated from the hilly area, in mixtures for hayfields and grazing up to the subalpine level in the high

mountains. (Marusca et all. 2023). It is recommended to use it in complex mixtures, in pre-mountain and

mountain areas to improve the permanent or the seeded grasslands.

CONCLUSIONS

- 1.The *Phleum pratense* species is one of the main perennial grasses, which can improved through total renovation, the degraded *Nardus stricta* grasslands in the high mountains.
- 2. Long-term experiments in the Bucegi Plateau, on subalpine *Nardus stricta* grasslands located at 1800 m altitude have demonstrated that the species *Phleum pratense*, the Favorit variety with 40% participation in the mixture sown by overseeding, resisted in a proportion of almost 26% on a background amended to 2/3 hectoliter acidity of the soil and adequate organomineral fertilization, without self-seeding.
- 3. The overseeding, calcium amendment and organo-mineral fertilization proved

- to be superior to reseeding with soil mobilization at 10-12 cm, non-amendment and mineral fertilization, where the species *Phleum pratense* disappeared from the grassy carpet.
- 4. After 20 years of adaptation to the harsh conditions of frost, sunstroke, drought, in the high mountains, a natural selection of the species occurred, which continued in the classic breeding process at the institute. 5. This new breeding method, in which the initial material is subjected to a longer period of time, to natural selection, in the area where it is to be cultivated, is a guarantee of adaptability and longevity, for future cultivations necessary for the grasslands renovation under climate change conditions.

REFERENCES

- Maruşca T., (2022) Long effect of tehnological improvement factors of subalpine grasslands of *Nardus stricta* from the Carpathians Mountains, Romanian Journal of Grassland an Forage Crops, Cluj-Napoca. nr.26 pp.15-25;
- Maruşca T., Zevedei P., Tod Monica, Dragoş Marcela, Mocanu V. (2023) Soiul de *Phleum pratense* L. (timoftică) - Carpatica, Oferta Cercetării Științifice pentru Transfer Tehnologic în Agricultură, Industria Alimentară şi Silvicultură, Bucuresti, Vol.XXVI/2023, ISSN 1844-0355, pp.98-99;
- 3. Tod Monica Alexandrina, Blaj V.A., Marusca T., Mocanu V., (2015) The romanian varieties of perennial grasses productivity and quality in terms of climatic changes, Journal of mountain Agriculture on the Balkans, Vol 18, no.1, Conferince, RIMSA, TROYAN, Bulgaria, pp.101-111,
- 4. Varga P., Moisuc A., Savatti M., Schitea M., Olaru C., Dragomir N., Savatti M jr. (1998), Ameliorarea plantelor furajer și producerea semințelor, Ed. Lumina, pp 214.

PRODUCTIVITY OF THE GRASSLANDS IN THE ARIEŞ VALLEY OF THE APUSENI MOUNTAINS

Teodor MARUŞCA*, Jóseph P. FRINK**,***, Monica A. TOD*, Marcela M. DRAGOŞ*, Cristina I. PORR*, Cristina C. COMŞIA*

*Institutul de Cercetare-Dezvoltare pentru Pajiști Brașov **Institutul Național de Cercetare-Dezvoltare în Silvicultură (INCDS) Cluj Napoca ***Autor corespondent: jpfrink@gmail.

Abstract

The grasslands of the Aries Valley are an integral part of the Apuseni Mountains, located between 340 and 1280 m altitude. 153 floristic surveys were carried out, which contained an average of 81 species of cormophytes and an average vegetation cover of 89%, of which 58% were forage species and 31% were species harmful to the grassy carpet. The average pastoral value (PV) of the 18 grassland associations was 39 and the production of green fodder mass (GM) was 7.9 t/ha with an optimal load of 0.7 LU/ha in 170 days of grazing season. In the 5 phytosociological alliances (Cynosurion cristati, Violion caninae, Stipion lessingianae, Festucion rupicolae and Cirsio pannonicae-Brachypodion pinnati) used mainly by grazing, an average of 5 t/ha GM was evaluated, an index of almost 30 VP with which 2900 liters of cow's milk per hectare can be produced with an optimal load of 0.5 LU/ha in a 160day grazing season. In the alliances harvested in haylage regime (Agrostion albae, Arrhenatherion elatioris and Holco-Juncion) 11.8 t/ha GM and 57.6 PV were evaluated with 236% GM and 193 PV index higher than the grassland alliances used by grazing with animals. Economic data on grassland productivity are used both in the preparation of development projects and in their further management.

Keywords: mountain grasslands, pastoral value, green mass production, milk production, optimal load.

INTRODUCTION

The efficient management of permanent grasslands calls for of knowledge the floristic composition of the grassy carpet, the production and forage quality followed by the means improvement if they are degraded and further rational use through grazing or mowing (ANGHEL et 1967; BĂRBULESCU al., and MOTCĂ, 1983). These data for evaluating the productivity

grasslands (green mass production and pastoral value) continue to serve for the preparation of their development projects, establishing the optimal animal load, animal production (milk, meat, etc.) and other economic purposes (MARUSCA et al., 2014). In this the evaluation of the paper. productivity of mountain grasslands is continued according to the new method based on floristic survey in

order to meet the needs presented

above.

MATERIAL AND METHOD

In the present work, the floristic surveys from the work "The grasslands of the Arieş Valley, between Lupşa and Turda" author Jóseph P. Frink doctoral thesis

under the supervision of Prof. Vasile Cristea from the "Babeş-Bolyai" University of Cluj-Napoca were used.

In this work, 18 grassland associations were identified as follows:

Cl. MOLINIO - ARRHENATHERETEA R. Tx. 1937

Ord. MOLINIETALIA Koch 1926

Al. Agrostion albae Soó 1943

- 1. As. Agrostio-Deschampsietum caespitosae Ujvárosi 1947
 - nardosum strictae (facies cu Nardus stricta)
- 2. As. Agrostetum albae Ujvárosi 1941
- 3. As. Festucetum pratensis Soó 1938

Al. Holco-Juncion Pass, 1964

- 4. As. Holcetum lanati Issler 1936 em. Pass. 1964
 - caricosum vulpinae (facies cu Carex vulpina)

Ord.ARRHENATHERETALIA Pawlowski 1928

- Al. Arrhenatherion elatioris Koch 1926
- 5. As. Arrhenatheretum elatioris Br.-Bl. Ex Scherrer 1925
 - trisetetosum flavescentis Horvatić 1930
- 6. As. Trisetetum flavescentis Rübel 1911

Al. Cynosurion cristati R. Tx. 1947

- 7. As. Festuco rubrae-Agrostietum capillaris Horvat 1951
 - genistetosum sagittalis Coldea 1991
 - nardosum strictae (facies Nardus stricta)
 - danthoniosum decumbentis (facies cu Danthonia decumbens)

Cl. NARDO - CALLUNETEA Preising. 1949

Ord. NARDETALIA Oberd. *ex* Preising. 1949

- Al. Violion caninae Schwickerath 1944
- 8. As. Nardo-Callunetum vulgaris (Šmarda 1953) Csűrös 1964

CL. FESTUCO-BROMETEA Br.-Bl. et R. Tx. ex Klika et Hadač 1944

Ord. FESTUCETALIA VALESIACAE Br.-Bl. et R. Tx. ex Br.-Bl. 1949 **Al. Stipion lessingianae** Soó 1947

- ii. Supion lessingianae 500 1747
- 9. As. Stipetum lessingianae Soó (1927 n. n.) 1947
 - botriochloosum ischaemi (facies cu Dichanthium ischaemum)
- 10.As. Stipetum pulcherrimae Soó 1942
 - botriochloosum ischaemi (facies cu Dichanthium ischaemum)

Al. Festucion rupicolae Soó 1940 corr. 1964

- 11.As. Stipetum capillatae (Hueck 1931) Krausch 1961
 - botriochloosum ischaemi (facies cu Dichanthium ischaemum)
- 12. As. Festuco rupicolae Caricetum humilis Soó 1930, 1947
 - botriochloetosum Rațiu et al. 1969
 - festucosum valesiacae (facies cu Festuca valesiaca)
 - stiposum pulcherrimae (facies cu Stipa pulcherrima)
- 13. As. Agrostio Festucetum rupicolae Csűrős-Káptalan (1962) 1964
- 14. As. Agrostio-Festucetum valesiacae Borisavljević Jovanović-Dunjić et Mišic 1955
- 15. As. Festucetum valesiaco-rupicolae Csűrös et Kovács 1962
 - botriochloosum ischaemi (facies cu Dichanthium ischaemum)
- 16. As. Botriochloetum ischaemi Pop 1977

Ord. BROMETALIA ERECTI Br.-Bl. 1936

- Al. Cirsio pannonicae Brachypodion pinnati Hadač et Klika 1944
- 17. As. Carici humilis Brachypodietum pinnati Soó 1947, 1949
- festucetosum rupicolae Kovács et Coldea 1967
- 18. As. Festuco rupicolae Brachypodietum pinnati (Soó 1927) Schneider-Binder 1971

The method for evaluating the production of green fodder mass and pastoral value was done according to the new method based on floristic survey (MARUŞCA, 2019, 2022; MARUŞCA et al. 2021, 2023). Following this method,

several works have been published and currently a journal of mountaineering, where more details regarding the working method are presented, on which we will not intervene (MARUŞCA et al. 2020 a, b; MARUŞCA et al. 2023, 2024).

RESULTS AND DISCUSSIONS

In the Arieş Valley between Lupşa and Turda, 18 grassland associations, 8 alliances, 5 orders

and 3 vegetation classes were identified between 340-1280 m altitude. (Table 1)

Table 1

Overview of the grassland associations in the Arieș Valley

No.	Association	No. of	Altitude	Exposition	Slope	Cormophyte	Coverage		
	Association	survey.	(m)	Exposition	(grade)	(nr)	%		
	Al. Agrostion albae								
1	Agrostio- Deschampsietum caespitosae	4	600 (500-620)	PLAN	0	37	80		
2	Agrostetum albae	4	400 (340-460)	PLAN	0	59	93		
3	Festucetum pratensis	9	420 (370-450)	PLAN, E, SE	4	106	97		
	Al. Holco-Juncion								
4	Holcetum lanati	3	370	PLAN	0	47	96		

No.	Association	No. of	Altitude	Exposition	Slope	Cormophyte	_			
		survey.	(m)	1	(grade)	(nr)	%			
			(350-420)	atherion elation	o mi a					
	T	I	Al. Arrneno	PLAN, W,	oris	I				
5	Arrhenatheretum elatioris	23	420 (350-580)	E, S, SE, NE	3	161	98			
6	Trisetetum flavescentis	2	400 (380-420)	Е	4	46	100			
	Al. Cynosurion cristati									
7	Festuco rubrae- Agrostetum capillaris	41	730 (450-1280)	N, S, NW, SE, W, NE, E, PLAN	12	186	98			
			Al. Violion	caninae						
8	Nardo-Callunetum vulgaris	4	740 (650-1000)	S	12	42	88			
		A	d. Stipion les	ssingianae						
9	Stipetum lessingianae	5	420 (400-450)	SW, S	34	34	79			
10	Stipetum pulcherrimae	5	400 (350-490)	S, SW	19	61	68			
			Al. Festu	cion rupicola	ie					
11	Stipetum capillatae	6	400 (350-400)	S, SE	16	72	65			
12	Festuco rupicolae- Caricetum humilis	8	480 (400-640)	S, W, E	17	108	85			
13	Agrostio-Festucetum rupicolae	7	580 (390-680)	W, S, E, SE, SW, P	9	90	95			
14	Agrostio-Festucetum valesiacae	7	620 (550-850)	S, SW, E, SE	22	95	96			
15	Festucetum valesiaco- rupicolae	9	460 (360-580)	PLAN, S, SW, E, SE	4	113	90			
16	Botriochloetum ischaemi	4	370 (350- 420)	S, SE	14	39	86			
	Al. Cirsio pannonicae-Brachypodion pinnati									
17	Carici humilis- Brachypodietum pinnati	4	660 (450-900)	W, S	12	80	92			
18	Festuco rupicolae- Brachypodietum pinnati	8	500 (350-550)	N, E, NW, PLAN, W	6	90	87			
A	AVERAGE-TOTAL	153	470 (340-1280)	ALL	10	81	89			

In the 153 surveys conducted with an average vegetation cover of 89%, 81 species of cormophytes were determined. The associations with the most cormophyte species were Festuco rubrae-Agrostetum capillaris (186 species), Festucetum valesiaco-rupicolae (113 species),

Festuco rupicolae - Caricetum species) humilis (108)and Festucetum pratensis (106 species) and the lowest number of species Stipetum recorded in lessingianae (34 species), Agrostio-Deschampsietum caespitosae (37 species) **Botriochloetum** and

ischaemi (39 species). The average participation in the grassy carpet was 58% species with forage value and 31% harmful species, a ratio that influenced the pastoral value index (PV) which was 39.22

(mediocre), the green mass production (GM) of 7.88 t/ha, with an optimal load of 0.68 LU/ha in 170 days of grazing season (Table 2).

 ${\it Table~2}$ Forage structure, pastoral value, green mass production and optimal animal loading

		Specie	es structure	Pasto	oral	Green	Grazing	Animal		
No.	Association		(%)	valı	ıe	mass	season	loading		
110.	Association	Forager	Harmful	Ind.	%	production		(LU/ha)		
		-			70	(t/ha)	(days)	(EC/III)		
	1	A	l. Agrostion a	lbae		1	ı	1		
1	Agrostio-Deschampsietum caespitosae	28	52	18.86	48	2.44	170	0.22		
2	Agrostetum albae	75	18	61.22	156	12.56	160	1.21		
3	Festucetum pratensis	89	8	74.89	191	14.95	165	1.39		
		A	d. Holco-June	cion		•		•		
4	Holcetum lanati	68	28	45.78	117	9.50	155	0.94		
		Al. <i>Ar</i>	rhenatherion	elatiori	s		•			
5	Arrhenatheretum elatioris	91	7	76.79	196	18.46	165	1.72		
6	Trisetetum flavescentis	93	7	73.87	188	13.57	160	1.30		
		Al.	. Cynosurion	cristati						
7	Festuco rubrae-Agrostetum capillaris	81	17	56.84	145	9.02	155	0.90		
	Al Violion caninae									
8	Nardo-Callunetum vulgaris	20	68	13.49	34	1.46	155	0.14		
	Al. Stipion lessingianae									
9	Stipetum lessingianae	16	63	7.66	20	0.59	165	0.05		
10	Stipetum pulcherrimae	16	52	8.00	20	0.77	160	0.07		
			Festucion rup	oicolae						
11	Stipetum capillatae	3	62	1.98	5	0.27	160	0.03		
12	Festuco rupicolae- Caricetum humilis	60	25	36.06	92	5.45	170	0.49		
13	Agrostio-Festucetum rupicolae	82	13	54.08	138	8.94	165	0.83		
14	Agrostio-Festucetum valesiacae	69	27	43.88	112	6.00	160	0.58		
15	Festucetum valesiaco- rupicolae	77	13	44.16	113	7.87	170	0.71		
16	Botriochloetum ischaemi	16	70	8.38	21	1.12	155	0.11		
		Cirsio pani	nonicae-Brac	hypodio	n pini	ıati				
17	Carici humilis- Brachypodietum pinnati	71	21	38.03	97	6.52	165	0.61		
18	Festuco rupicolae- Brachypodietum pinnati	74	13	42.02	107	11.35	175	1.0		
	AVERAGE	57	31	39.22	100	7.82	170	0.68		

The highest productivity was evaluated in associations harvested mainly in hay regime such as

Arrhenatheretum elatioris (76.79 PV; 18.46 t/ha GM), Festucetum pratensis (74.89 PV; 14.95 t/ha

GM) and *Trisetetum flavescentis* (73.87 PV; 13.57 t/ha GM). The lowest productivity was evaluated in associations dominated by *Stipa sp.* (2-8 PV; 0.3-0.8 t/ha GM) associations with degraded forage vegetation *Botriochloetum ischaemi* and *Nardo-Callunetum vulgaris* (8-

13.5 PV; 1.12-1.46 t/ha GM) valorized by grazing with animals at a load of only 0.03-0.14 LU/ha. The phytosociological alliance level analysis with data closer to Natura 2000 habitats is presented in Table 3.

Table 3
Grazing season duration, pastoral value, green mass production and cow's milk
at grassland phytosociological alliance level

Phytosociolo	gical alliance	Grazing season		mass action	Animal loading	Pastoral value		ilk ıction
1 Hytosociolo	Phytosociological alliance		t/ha	%	LU/ha	(ind.)	L/ha	%
A. Pasture, n	nain use							
Cynosurion c	ristati	155	9.02	180	0.90	56.8	5280	182
Violion canin	ae	155	1.46	29	0.14	13.5	1260	43
Stipion lessin	gianae	165	0.68	14	0.06	7.8	770	27
Festucion rup	picolae	165	4.94	99	0.46	31.4	3110	107
Cirsio pannor Brachypodior		170	8.93	178	0.81	40.0	4080	141
Average A	•	160	5.01	100	0.47	29.9	2900	100
B. Hay, main	use							
Agrostion alb	ае	X	9.98	84	X	51.7	X	X
Holco-Juncio	n	X	9.50	80	X	45.8	X	X
Arrhenatheria	on elatioris	X	16.01	135	X	75.3	X	X
Average B		X	11.83	100	X	57.6	X	X
Difference	+,-	X	+6.82	X	X	+27.7	X	X
B-A	%	X	236	X	X	193	X	X

By synthesizing 18 the grassland associations 8 phytosociological alliances similar EU habitats (GAFTA. MAOUNTFORD, 2008). the average productivity results are slightly different from evaluated at the level of component associations. The equivalent cow's milk production is a final for evaluating parameter the productivity of a grassland, which in our case varied within very wide limits depending on the pastoral value and the duration of the

dependent grazing season altitude temperature and air (MARUSCA, 2022). Thus, in the grasslands used by grazing with animals at the level of the 5 phytosociological alliances, 5t/ha green mass (GM) was evaluated, a pastoral value (PV) of almost 30, 2900 liters of cow's milk per hectare can be produced with a load of almost 0.5 LU /ha in an average season of 160 days grazing season. The most valuable alliance is Cynosurion cristati with 9 t/ha GM, PV index of 57, 5280 L/ha milk in

155 days of grazing with a load of 0.9 LU/ha. The worst results were evaluated in the alliance Stipion lessingianae with 0.7 t/ha GM, PV index of 7.8, 770 L/ha milk in 165 days of grazing with a load of 0.06 LU /ha. Poor results were also evaluated in one of the most widespread alliances Violion caninae which has its origin in Cynosurion cristati through its invasion by the species Nardus stricta, where 1.46 t/ha GM is obtained, a PV index of only 13.5 and 1260 L/ha milk, achieved in 155 days of grazing with a load of

0.14 LU /ha. The last 3 alliances mainly exploited as hay achieve an average production of 11.8 t/ha GM and a 57.6 PV index with 236% GM and 193% PV index higher than the average of alliances exploited by grazing. The highest GM production and PV index were evaluated in the *Arrhenatherion elatioris* alliance (16t/ha GM and 75 PV) and the lowest in *Holco-Juncion* (9.5t/ha GM and 46 PV). Grasslands used by mowing for hay are better managed and fertilized than those used by grazing with animals.

CONCLUSIONS

The permanent grasslands of the Aries Valley located between 340-1280 m altitude with remarkable phytodiversity represented by 372 species of cormophytes, 18 associations, 8 alliances and 5 orders belonging to 3 vegetation classes. The association with the most species was Festuco rubrae-Agrostetum capillaris (186 species) and the fewest at Stipetum lessingianae (34 species). The best productivity was evaluated at the Arrhenatheretum elatioris association with a pastoral value (PV) of 76.8 and a green fodder

mass production (GM) of 18.5 t/ha. lowest productivity evaluated at the Botriochloetum and Nardo-Callunetum ischaemi vulgaris associations with 8-13.5 PV and 1.12-1.46 t/ha GM. At the phytosociological alliance (habitat) the most valuable Cynosurion cristati with 9 t/ha GM, 57 PV index, 5280 liters of milk per hectare in 155 days of grazing season, and the weakest was evaluated at Stipion lessingianae with 0.7 t/ha GM, 7.8 PV index, 770 L/ha milk in 165 days of grazing season.

REFERENCES

- 1. Anghel Gh., Bărbulescu C., Burcea P., Grîneanu A., Niedermaier K., Samoilă Z., Vasiu V. (1967) Cultura pajiștilor, Ed. Agrosilvică, Bucuresti
- 2. Bărbulescu C, Motcă Gh. (1983) Pășunile munților înalți, Ed. "Ceres
- 3. Cristea V., Gafta D., Pedrotti F., 2004, Fitosociologie, Editura Presa Universitară Clujeană
- 4. Frink P. Jóseph (2010) Pajiştile din Valea Arieşului, între Lupşa şi Turda, Structură, ecologie, folosință durabilă, Presa Universitară Clujeană

- 5. Gafta D., Mountford J.O., Coord. (2008) Manual de interpretare a habitatelor Natura 2000 din România, Ed. Risoprint, Cluj Napoca
- 6. Maruşca T., Mocanu V., Haş E. C., Tod Monica A., Andreoiu A. C., Dragoş Marcela M. M., Blaj V. A., Ene T., Silistru Doina, Ichim E., Zevedei P., Constantinescu C., Tod S. (2014) Ghid de întocmire a amenajamentelor pastorale, Editura Capolavoro, Braşov
- 7. Maruşca T. (2019) Contributions to the evaluation of pasture productivity using the floristic releve, Romanian Journal of Grassland and Forage Crops Nr. 19, Cluj Napoca, pp. 33-47, ISSN 2068-3065
- 8. Maruşca T., Ularu P., Gurean D. M., Dragoş Marcela M. M., Taulescu Elena (2020 a) Contributions to the grassland productivity evaluation in the Perşani Mountains, Journal on Montology (Jurnalul de Montanologie), CE-MONT, nr. 13, pag. 23-32
- 9. Maruṣca T., Zevedei M.P., Taulescu Elena, Andreoiu Andrea C. (2020 b) Studii privind sistemul agrosilvopastoral cu fagi din Carpații Orientali/ Studies concerning the agrosilvopastoral system with beech from the Oriental Carpathians, Journal on Montology (Jurnalul de Montanologie), CE-MONT, nr. 12, pag. 7-11
- 10. Marușca T., Roman Anamaria, Taulescu Elena, Ursu T.M., Popa R. D. (2021) Detecting trends in the quality and productivity of grasslands by analyzing the historical vegetation relevés: A case study from Southeastern Carpathians, Vlădeasa Mountains (Romania), Notulae Botanicae Horti Agrobotanici Cluj-Napoca, Volume 49,
- 11. Marușca T. (2022) Praticultură și pastoralism în cercetarea științifică, Editura Universității Transilvania din Brașov, 311 pagini, ISBN 978-606-19-1565-1
- 12. Marușca T., Neblea Monica, Tod.A. Monica (2023 a) Evaluarea productivității pajiștilor din Munții Leaota și vestul Munților Bucegi, Journal on Montology (Jurnalul de Montanologie), CE-MONT, nr. 18
- 13. Marușca T., Bojinescu-Rostescu I., Dragoș M. Marcela, Porr I. Cristina, Comșia C. Cristina (2023 b) Evaluarea productivității pajiștilor din nordul Munților Semenic (Carpații Occidentali), Revista Acta Montanologiae ICDM Cristian, nr.1 Revistă sub auspiciile ASAS, revistă de cunoaștere și cercetare științifică a culturii și civilizației rural montan, nr.1/noiembr, pp.38-60
- Maruşca T., Niculescu Mariana, Tod A. Monica (2024) Contribuţii la evaluarea productivităţii pajiştilor din Munţii Căpăţânii (Carpaţii Meridionali), Journal on Montology (Jurnalul de Montanologie), CE-MONT, nr. 20
- 15. Puşcaru- Soroceanu Evdochia, Puşcaru D., Buia Al., Burduja C., Csűrös St. Grîneanu A., Niedermaier K., Popescu C.P., Răvăruț M. (1963) Păşunile şi fâneţele din R. P. Română, Studiu geobotanic şi agroproductiv, Editura Academiei R.P.R., Bucureşti.

STUDIES ON THE HEAVY METAL BIOREMEDIATION ABILITY OF MULTIPLE SPECIES – A CASE STUDY ON BAIA MARE SITES

Loredana CRIŞAN *, Roxana VIDICAN *, Vlad STOIAN *, Anca PLEŞA *, Bianca POP *, Alexandra GHEORGHIŢĂ *

* Faculty of Agriculture. Department of Microbiology. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manăştur street, 3-5, 400372, Romania ** Corresponding author e-mail roxana.vidican@usamvcluj.ro

Abstract

Bioremediation is a sustainable method for restoring the quality of soil in urban areas affected by heavy metal contamination. Plant samples were analyzed using portable X-ray fluorescence spectrometry (pXRF) to determine the concentrations of heavy metals accumulated in the studied species. Analysis of the accumulation capacity of heavy metals in various sites revealed significant differences between the plant species investigated. Species such as Lavandula angustifolia, Salix viminalis, Salix alba and Agrostis capillaris showed high levels of bioaccumulation for certain metals, highlighting a specific and differentiated potential for application in phytoremediation processes. These results highlight the need for a rigorous selection of plant species used in phytoremediation, correlated with the predominant type of heavy metal, in order to optimize the efficiency of ecological remediation processes.

Keywords: polluted soils, heavy metals, phytoextraction, bioremediation, Agrostis capillaris

INTRODUCTION

Heavy metals are a type of pollutant commonly encountered, and due to their high toxicity, soil contamination with these substances can represent a significant risk to soil organisms, including microbial communities (Zhao et al., 2019).

Soil pollutants mainly originate from human activities and include biological, domestic and industrial residues, improperly stored waste or manure, all of which have a negative impact on soil metabolism. Industrial metal mining and processing activities constitute a significant source of heavy metal

contamination of agricultural soils (Navarro et al., 2008).

In the context of increasing soil degradation caused by heavy metal pollution resulting from anthropogenic activities, researchers' interest in soil microbial imbalances is growing. Soil acts as an important reservoir for numerous contaminants (Sandu et al., 2018).

Soil is a complex environment, consisting of a solid, a liquid and a gaseous phase, the components of which undergo significant variations. The interaction between this soil system and the plants that grow in it forms

what is known as the soil-plant ecosystem (Chen et al., 2010; Corcoz et al., 2022; Păcurar et al., 2020; Sângeorzan et al., 2024; Wu et al., 2011).

Soil degradation means the reduction or loss of its functions and uses. Soil performs three ecological functions: produces it biomass (food, feed, raw materials), filters and transforms substances between the atmosphere, water vegetation, and provides biological habitat (Sandor et al., 2016; Stoian et al., 2022; Vidican and Sandor, 2015). At the same time, it has technical. industrial and sociofunctions. economic serving support for constructions, a source of resources and an element of heritage that protects archaeological and natural values (Blum et al., 1998; Gaga et al, 2022; Onica et al., 2017; Rotar et al., 2020; Vaida et al., 2021).

When heavy metals reach the they undergo soil, transformations into various geochemical forms because physical, chemical and biological processes, such as adsorption, dissolution. complexation and absorption by organisms (Liu et al., 2013).

The toxicity and bioavailability of heavy metals in soil are influenced not only by their total concentration, but also by the form in which they are found. For example, water-soluble forms and those associated with carbonate are considered the most readily

available to organisms; reducible forms, bound to Fe/Mn oxides, and oxidizable forms, associated with organic matter, can become bioavailable under certain conditions. while the residual fraction, fixed in the soil matrix, is not accessible to plants (Delgado si colab., 2011; Rodríguez și colab., 2009). In this context. understanding the concentration of labile fractions of heavy metals is particularly important (Liu wt al., 2013).

The chemical forms in which heavy metals are found in soil significantly influence their mobility. Cadmium (Cd), zinc (Zn) and molybdenum (Mo) are among the most mobile elements, while chromium (Cr), nickel (Ni) and lead (Pb) have considerably lower mobility. (Fijałkowski et al., 2012).

Given the current need for green spaces in urban landscapes, the value of brownfields as potential recreational space is increasingly widely recognized (Merwin et al., 2022).

Regarding the remediation of soils contaminated with heavy metals (HM), several methods are currently available. Among them, phytoremediation is considered the most environmentally friendly and cost-effective technology. emerging method is based on the ability of certain green plants to extract heavy metals from contaminated soils (Angelova et al., 2015; Carabulea et al., 2022).

Phytoremediation the by which plants process are introduced into the environment to promote the assimilation contaminants in their roots and leaves. Although this process has been recognized and demonstrated by humans for more than 300 years. scientific studies phytoremediation only began after the 1980s (Lasat, 2000).

Phytostabilization consists of reducing the mobility and bioavailability of soil contaminants, physical through or chemical mechanisms, with the aim of preventing their spread environment. (Vidican et al., 2023). Phytodegradation, method a applicable especially to organic compounds, involves the decomposition or transformation of contaminants into less toxic forms, through the release of enzymes at the root level or through metabolic activities carried out inside plant tissues. (Vidican et al., 2023).

In phytovolatilization, contaminants are absorbed by plant

MATERIAL AND METHOD

The research methodology, including the techniques collecting, processing and analyzing field data, is consistent with the objectives. established In Baia proposed to Mare. we use phytoextraction as the first method, phytostabilization secondary method, given that the

roots, transformed into gaseous compounds and subsequently released into the atmosphere through the foliar system, through the process of evapotranspiration (Laghlim et al., 2015).

Phytoextraction refers to the accumulation of contaminants in the aboveground (harvestable) biomass of plants, either through continuous natural process using hyperaccumulator plants or through an induced process using chelating agents. Hyperaccumulator plants are adapted to soils with naturally high metal content and have the ability to efficiently accumulate various metals in their tissues (Vâtcă et al., 2022; Vidican et al., 2023).

The main aim of this research is to assess the level of heavy metal pollution in relation to a set of plants, from the Baia Mare area, a region known for its industrial and mining activities, which have had a significant impact on soil quality.

plants were selected based on their phytoextraction potential.

In accordance with the established objectives, based on the favorability and soil indices, the species identified with phytoremediation potential in Baia Mare, according to SPIRE-UIA-138, are the following: *Agrostic capillaris, Calamagrostis epigeos*,

Myschantus giganteus, Reynoutria japonica, Salix alba-existent, Salix alba nou, Salix viminalis, Fraximus excelsor,Iris germanica, Lavandula angustifolia, Pinus nigra, Robinia pseudoacacia, Betula pendula – Parthenocissus existent. quinquefolia, Salix viminalis nou, Acer platanoides, *Amorpha* fructicosa, Sorbus aucuparia, Catalpa bignonioides globose, Equisetum arvense, Juniperus spp., laurocerasus. Prunus Sorbus aucuparia.

These species were selected based on preference criteria for ecological zoning, considering their phytoremediation capacity and other uses. The natural distribution area was assessed to verify whether these species exist in the spontaneous flora, either as species or varieties, whether they meet edaphic thermal necessary and conditions throughout the experimental vegetation cycle (including the sum of temperature

RESULTS AND DISCUSSIONS

The way in which heavy metals can accumulate in plant and animal organisms, including humans, as well as the pathology they cause, justify the interest given to these pollutants. The lack of monitoring and control of heavy metals in soils, air and water can represent a major danger to the environment and, in particular, to human health.

degrees). The average amount of precipitation was also taken into account to ensure their adaptability to the local environment.

Samples were taken from 5 sites, namely: Craica, different Colonia Topitorilor, RombPlumb, Ferneziu and Urbis in the city of Baia Mare (47°39′ N, 23°34′ E), located in northwestern Romania, on a total area of 7.3 hectares of brown soils. These locations present different levels of heavy metal contamination, mainly originating from anthropogenic activities such as mining, metallurgy and urban expansion. After taking samples from the five experimental sites, they were dried under ambient conditions, then ground using a Grindomix Retsch GM 200 knife mill. Finally, the samples were by portable analyzed X-ray fluorescence spectrometry (pXRF) to determine the heavy metals accumulated in the analyzed plant species.

Metals, natural components of soil, are classified according to physiological role essential heavy metals (such as Fe, Mn, Cu, Zn and Ni), which act as indispensable micronutrients for the physiological and biochemical processes of plants. These are taken up from the soil solution and included in the structure of enzymes and proteins, and non-essential metals (such as Cd, Pb, As, Hg and Cr). which have no known biological role, but regardless of their type, high concentrations of heavy metals can inhibit plant growth and induce symptoms of toxicity, however, certain plant species can survive and even develop in contaminated soils, such as those in the vicinity of mining operations (Laghlini et al., 2015).

Following the analysis of from plant species the contaminated with heavy metals, it was found that certain species have a superior capacity to extract heavy metals, while others have a reduced capacity, and for some species the concentrations of heavy metals were below the detection limit. These results vary depending on the plant species present five on the experimental sites.

The study aimed to identify and analyze the potential for ecological rehabilitation of contaminated soils by applying the phytoremediation technique – a process that involves the use of plants capable of absorbing,

accumulating or stabilizing heavy metals in the soil. In this regard, several plant species from the affected lands were analyzed. The species were chosen based on their tolerance and efficiency extracting or immobilizing metals, and the efficiency of each species will be monitored and compared to determine the most promising solutions for ecological remediation of these degraded soils.

The chosen species must demonstrate the ability to extract heavy metals from the soil through the root system and the foliar apparatus, while it must be able to be subsequently exploited.

Plant species from the Craica site varied significantly in their capacity to accumulate heavy metals (table 1). Agrostis capillaris proved to be the most efficient species for Pb extraction, followed by Myschantus giganteus and Salix alba new. Salix alba – extant had the lowest extraction value.

 $Table\ 1$ Plant species and their capacity to extract heavy metals from the Craica site

Species	Pb	Cu	Cd	Zn
Agrostis capillaris	82.25	66.63	11.13	464.50
Calamagrostis epigeos	4.75	43.25	4.50	98.00
Myschantus giganteus	65.06	42.75	23.31	141.69
Reynoutria japonica	35.63	43.00	17.25	328.00
Salix alba- present	2.50	49.25	20.13	524.88
Salix alba new	60.00	54.13	23.13	830.13
Salix viminalis	36.63	22.63	8.13	131.25

For copper (Cu) extraction, Agrostis capillaris had the highest value (66.63 mg/kg), followed by Salix alba new and Salix alba present. Salix viminalis recorded the lowest value (22.63 mg/kg). In the case of cadmium (Cd), Myschantus giganteus (23.31 mg/kg) and Salix alba new (23.13 mg/kg) were the most efficient, followed by Salix alba – present, and Calamagrostis epigeos had the lowest extraction capacity (4.50 mg/kg). Salix alba exceptional new has an accumulation capacity (830.13 mg/kg), followed by Salix alba present and Agrostis capillaris.

Calamagrostis epigeos had the lowest value (98.00 mg/kg).

After analyzing the extraction capacity of heavy metals in the Colonia Topitorilor site (table 2), it was highlighted that the plant species Agrostis capillaris had the highest value in lead extraction (84.00 mg/kg). Robinia pseudoacacia recorded the highest values for copper extraction (51.88 mg/kg), and Fraxinus excelsior stood out for its highest cadmium extraction capacity (21.08 mg/kg). Salix viminalis showed a very high phytoextraction capacity of Zn (792.50 mg/kg) in this site.

 $Table\ 2$ Plant species and their capacity to extract heavy metals from the Colonia Topitorilor site

Species	Pb	Cu	Cd	Zn
Agrostis capillaris	84		2.75	38
Fraxinus excelsior		25.33	21.08	61.04
Iris germanica	14.75	38.00	16.00	69
Lavandula angustifolia		47.63	18.50	83.63
Pinus nigra		47		104.50
Robinia pseudoacacia	4.25	51.88	20.70	79.88
Reynoutria japonica		42.67	17.33	214.58
Salix alba - new	11.33	50.29	19.50	564.42
Salix viminalis	11.50	36.50	18.00	792.50

In the analysis of the capacity of plant species to extract heavy metals in the Ferneziu site (table 3), it is observed that *Salix alba* (both existing and new) stands out as the most efficient species for the accumulation of lead (Pb), copper (Cu), cadmium (Cd) and zinc (Zn), especially the existing

Salix alba, which accumulated exceptional amounts of zinc. Also, Reynoutria japonica proves efficient in extracting Pb and Cu, while Salix viminalis is well-placed for the accumulation of Cu and Zn. Species from the genera Betula pendula and Parthenocissus quinquefolia are less efficient, with

low values for most metals, especially for cadmium and zinc.

In the Romplumb site (table 4), Sorbus aucuparia is the most species efficient for lead accumulation (23.50 mg/kg), while Agrostis capillaris has the lowest extraction (4.25)mg/kg). Regarding copper, Salix alba - new shows an exceptional accumulation capacity (60.88)mg/kg), and Agrostis capillaris records the lowest value (15.50 mg/kg). For cadmium extraction, Salix alba new is the most efficient species (23.50)mg/kg), compared Reynoutria japonica, which accumulates only 14.75 mg/kg. There is a significant difference regarding zinc accumulation, Betula pendula which has a very high accumulation capacity (1057.75 mg/kg), and Agrostis capillaris which accumulates only 33.25 mg/kg.

Table 3 Plant species and their capacity to extract heavy metals from the Ferneziu site

Species	Pb	Cu	Cd	Zn
Agrostis capillaris	20.75	37.50	16.75	647.50
Betula pendula -existent	15.75	46.75	23.25	272.25
Betula pendula -nou	34.75	46.79	14.38	337.04
Myschanthus giganteus		43.13	14.92	88.54
Parthenocissus quinquefolia	7.08	39.75	20.04	111.75
Reynoutria japonica	36.30	54.93	19.43	330.93
Salix alba - present		55.25	28.50	1963.75
Salix alba - new	57.75	64.00	22.25	839.63
Salix viminalis nou	14.83	54.25	21.91	817.25

 $Table \ 4$ Plant species and their capacity to extract heavy metals from the Romplumb site

Species	Pb	Cu	Cd	Zn
Acer platanoides -nou	13.88	44.50	20.38	101.50
Agrostis capillaris	4.25	15.50		33.25
Amorpha fructicosa			10.50	72.25
Betula pendula	15.50	45.63	22.95	1057.75
Reynoutria japonica	13.75	47.875	14.75	568.38
Robinia pseudoacacia	11.63	44.75	17.63	99.88
Salix alba - present	7.00	34.13	20.13	898.75
Salix alba - new	11.75	60.88	23.50	897.13
Salix viminlis nou	15.38	33.00	19.88	624
Sorbus aucuparia	23.50	47.58	13.08	115.50

In the Urbis site (table 5), Lavandula angustifolia presents the

highest lead accumulation capacity (127.88 mg/kg), followed by

Equisetum arvense (28.25mg/kg). significantly This exceeds values of Juniperus spp., Sorbus aucuparea and Salix viminalis which species represent low accumulations 8 mg/kg. < Lavandula angustifolia differs by a significantly higher concentration of Cu (90.75), almost double that of Juniperus spp. (54.46). Agrostis capillaris records the lowest value, of 19.50. Salix species, such as Salix alba and Salix viminalis, are located in the area of average values, between 31.19 and 40.17.

The highest Cd value was recorded in *Salix viminalis* (43.83), followed by *Juniperus spp.* (20.13) and Equisetum arvense (19.63),

these being the species with the highest capacity to accumulate this metal. In contrast, the lowest values were observed in *Agrostis capillaris* (7.00), *Lavandula angustifolia* (15.13) and *Catalpa bignonioides* globosa (16.13), indicating a lower capacity to accumulate cadmium.

Salix viminalis presented the highest extraction of Zn (498.83), followed by Salix alba (381.06), Equisetum arvense (352.88) and Reynoutria japonica (292.75). The lowest values were recorded in Juniperus spp. (65.21), Prunus laurocerasus (70.13) and Catalpa bignonioides globosa (111.63), which present a significantly lower capacity to absorb zinc.

Table 5 Plant species and their capacity to extract heavy metals from the Urbis site

Species	Pb	Cu	Cd	Zn
Agrostis capillaris		19.50	7.00	125.25
Catalpa bignonioides globosa		45.25	16.13	111.63
Equisetum arvense	28.25	51.63	19.63	352.88
Juniperus spp.	7.46	54.46	20.13	65.21
Lavandula angustifolia	127.88	90.75	15.13	270.50
Prunus laurocerasus		29.25	15.25	70.13
Reynoutria japonica		26.58	17.42	292.75
Salix viminalis	2.75	40.17	43.83	498.83
Salix alba - present		31.19	17.19	381.06
Salix alba new		37.83	19.17	162.17
Sorbus aucuparia	4.00	44.25	15.50	109.25

The analysis of the bioaccumulation capacity of heavy metals in different sites revealed significant variations among the plant species studied. Species such as Lavandula angustifolia, Salix viminalis, Salix alba and Agrostis capillaris were highlighted by high accumulations for specific metals,

indicating a differentiated and selective potential in phytoremediation. These differences suggest the need for an adapted selection of species depending on the type of contaminant present, in order to optimize the efficiency of phytoremediation processes.

Identifying the most suitable candidate plant species represents an essential challenge in the application of phytoremediation, given the risk that hazardous heavy metals (HM) enter human and animal organisms through food chains (Gupta et al., 2013).

Phytoextraction is based on the use of natural hyperaccumulator plants, which have an exceptional capacity to accumulate metals. Hyperaccumulators are plant species capable of accumulating metals at levels up to 100 times higher than those obtained by common non-accumulating plants.

CONCLUSIONS

In the Craica site, the most efficient species in bioaccumulating heavy metals were *Salix alba*, *Agrostis capillaris* and *Myschantus giganteus*, which presented consistently high values for two or more of the analyzed contaminants.

In the Colonia Topitorilor site, *Agrostis capillaris* accumulated the most Pb, *Robinia pseudoacacia* – Cu, *Fraxinus excelsior* – Cd, and *Salix viminalis* presented the highest phytoextraction capacity of Zn, highlighting the selective potential of the species for phytoremediation.

In the Ferneziu site, *Salix alba* (existing and new) proved to be the most efficient species in accumulating Pb, Cu, Cd and Zn, especially the existing variant for

zinc. Reynoutria japonica was efficient in extracting Pb and Cu, and Salix viminalis significantly accumulated Cu and Zn.

At the Romplumb site, Sorbus aucuparia stood out as the most efficient species for lead accumulation, and Salix alba presented the highest values for copper and cadmium.

At the Urbis site, Lavandula angustifolia stood out for its exceptional capacity for lead and copper accumulation, significantly surpassing other species. Salix viminalis accumulated the highest levels of cadmium and zinc, along with Salix alba and Equisetum arvense.

REFERENCES

- 1. Angelova, V. R., Grekov, D. F., Kisyov, V. K., & Ivanov, K. I. (2015) Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. *Int. J. Agric. Biosyst. Eng*, *9*(5), 522-529..
- 2. Blum, W. E. H. (1998) Soil degradation caused by industrialization and urbanization.

- 3. Carabulea, V., Motelică, D. M., Vrînceanu, N. O., Plopeanu, G. I., Costea, M., Oprea, B. Ş., & Tănase, V. (2023) Bioaccumulation of heavy metals in garlic bulbs (Allium sativum L.) in correlation with soil from private gardens in the Copşa Mică area, Romania.
- 4. Chen, X., Xia, X., Zhao, Y., & Zhang, P. (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. *Journal of hazardous materials*, *181*(1-3), 640-646.
- 5. Corcoz, L., Păcurar, F., Pop-Moldovan, V., Vaida, I., Pleșa, A., Stoian, V., & Vidican, R. (2022). Long-term fertilization alters mycorrhizal colonization strategy in the roots of agrostis capillaris. *Agriculture*, *12*(6), 847.
- 6. Delgado, J., Barba-Brioso, C., Nieto, J. M., & Boski, T. (2011) Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. *Science of the Total Environment*, 409(19), 3666-3679.
- 7. Fijałkowski, K., Kacprzak, M., Grobelak, A., & Placek, A. (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. *Inżynieria i Ochrona środowiska*, 15, 81-92.
- 8. Gaga, I., Pacurar, F., Vaida, I., Plesa, A., & Rotar, I. (2022). Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. *Plants*, *11*(15), 1975.
- 9. Gupta, A. K., Verma, S. K., Khan, K., & Verma, R. K. (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites.
- 10. Laghlimi, M., Baghdad, B., El Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: a review. *Open journal of Ecology*, *5*(8), 375-388.
- 11. Liu, G., Tao, L., Liu, X., Hou, J., Wang, A., & Li, R. (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. *Journal of Geochemical Exploration*, *132*, 156-163.
- 12. Liu, S., Yang, B., Liang, Y., Xiao, Y., & Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. *Environmental Science and Pollution Research*, 27, 16069-16085.
- 13. Merwin, L., Umek, L., & Anastasio, A. E. (2022). Urban post-industrial landscapes have unrealized ecological potential. *Restoration ecology*, *30*(8), e13643.

- 14. Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. *Journal of Geochemical exploration*, *96*(2-3), 183-193.
- 15. Onica, B. M., Vidican, R., Sandor, V., Brad, T., & Sandor, M. (2017). Priming effect induced by the use of different fertilizers on soil functional diversity. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca.* Agriculture, 74(2), 107-115.
- 16. Păcurar, F., Balazsi, Á., Rotar, I., Vaida, I., Reif, A., Vidican, R., & Sângeorzan, D. (2020). Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape. Romanian Biotechnol. Lett, 25, 1128-1135.
- 17. Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. *Journal of environmental management*, 90(2), 1106-1116.
- 18. Rotar, I., Vaida, I., & Păcurar, F. (2020). Species with indicative values for the management of the mountain grasslands. *Romanian Agricultural Research*, (37).
- 19. Sandor, V., Vidican, R., Stoian, V., & Sandor, M. (2016). Influences of soil texture, biota and fertilizers on community level physiological profile.
- 20. Sandu, M. A., & Virsta, A. (2018). Polychlorinated Biphenyls in Soil: Exposure and Health Risk.". *Agriculture for Life, Life for Agriculture*, 399-404.
- 21. Sângeorzan, D. D., Păcurar, F., Reif, A., Weinacker, H., Rușdea, E., Vaida, I., & Rotar, I. (2024). Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. *Remote Sensing*, 16(11), 2012.
- 22. Stoian, V., Vidican, R., Florin, P., Corcoz, L., Pop-Moldovan, V., Vaida, I., Vâtcă, S., Stoian V. A. & Pleşa, A. (2022). Exploration of soil functional microbiomes—A concept proposal for long-term fertilized grasslands. *Plants*, *11*(9), 1253.
- 23. Vâtcă, S. D., Gâdea, Ş., Vidican, R., Şandor, M., Stoian, V., Vâtcă, A., ... & Stoian, V. A. (2022). Primary Growth Effect of Salix viminalis L. CV. Inger and Tordis in Controlled Conditions by Exploring Optimum Cutting Lengths and Rhizogenesis Treatments. *Sustainability*, *14*(15), 9272.

- 24. Vaida, I., Păcurar, F., Rotar, I., Tomoș, L., & Stoian, V. (2021). Changes in diversity due to long-term management in a high natural value grassland. *Plants*, *10*(4), 739.
- 25. Vidican, R., Mihăiescu, T., Pleşa, A., Mălinaş, A., & Pop, B. (2023). The phytoremediation potential of Lavandula angustifolia Mill. grown in soils historically polluted with heavy metals: a case study from Baia Mare, Romania.
- 26. Vidican, R., & Sandor, A. V. (2015). Microcosm experiments as a tool in soil ecology studies. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture*, 72(1), 319-320.
- 27. Zhao, X., Huang, J., Lu, J., & Sun, Y. (2019). Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. *Ecotoxicology and Environmental Safety*, 170, 218-226.

STUDIES ON THE ECONOMIC EVALUATION OF THE PRODUCTIVITY OF AGROSILVOPASTORAL SYSTEMS WITH DOWNY OAK (QUERCUS PUBESCENS) IN DOBROGEA

*Research-Development Institute for Grasslands Brasov
**National Institute for Research and Development in Forestry "Marin Drăcea", Bucharest

*** Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov

****Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța

***** Forestry Faculty, Ștefan cel Mare University of Suceava

******Collaborator e-mail address: lilianmihaila@yahoo.co.uk

Abstract

One of the most effective measures to prevent the negative impact of global warming on grasslands is the agrosilvopastoral system (ASP), in which trees have a favorable impact on the grass cover, production and livestock welfare throughout the entire grazing season. On studied grassland with 75 downy oak (Quercus pubescens) trees per hectare in Northern Dobrogea, a 145-day grazing season yields a production of 2,400 liters of cow's milk per hectare, 23% more than on treeless pastures, where the yield was estimated at 1,850 l/ha. Additionally, in the ASP system, the harvesting of wood after 120 years produces 28 m^3 of construction timber and 5.5 m^3 of firewood per hectare. The average annual acorn production is approximately 75 kg/ha/year. The annual economic value, expressed in euros, of ASP systems with downy oak is €1,375, consisting of €1,200 from milk (87%), €135 (10%) from acorn, and €40 (3%) from timber and firewood, which is 33% higher than the value of milk from treeless pasture, which is €925 (100%). Beyond these higher values, ASP systems offer additional benefits compared to treeless pastures, such as improved livestock welfare, biodiversity conservation, carbon storage, landscape value, and other ecosystem services that are harder to quantify financially.

Keywords: agrosilvopastoral systems, *Quercus pubescens*, production and value of milk, wood and acorns

INTRODUCTION

Global climate warming requires the implementation of preventive measures to mitigate its negative effects, similar to those adopted in countries with hot and dry climates. Among the most widespread of these are agrosilvopastoral systems (ASP), also known as "dehesa," "montado," or "agroforestry" systems (OLEA and SAN MIGUEL, 2006: SHARROW and FLECHTER,

1994). In Romania, these grasslands with scattered trees are traditionally referred to as "rariste" or "dumbravă." They are commonly found on communal pastures and grazing lands in warmer, drier regions, where they provide shade for animals during the grazing season (MIHĂILĂ et al., 2010; MARUŞCA, 2012). These ASP systems in our country have been

less studied in the past; however, recent climate changes have raised the need to investigate ASP systems in various regions of Romania, resulting in a first synthesis presented by MARUŞCA et al. in 2020. In these studies, based on floristic surveys from grasslands without trees and those with tree canopy cover, the production of green forage mass and pastoral value were assessed, highlighting the role of woody vegetation in protecting

and livestock from pastures excessive heat (MARUSCA, 2019; This paper presents comprehensive economic evaluation agrosilvopastoral of an (ASP) system with downy oak (Ouercus pubescens) in the Dobrogea region, focusing on the production of milk. construction wood, firewood, and acorns, At national level Dobrogea is one of the regions most affected by global warming.

MATERIAL AND METHOD

The study on the agrosilvopastoral (ASP) system with downy oak (*Quercus pubescens*) was conducted on the pasture near the village of General Praporgescu, Cerna commune, Tulcea County, located in the northern part of the Dobrogean Plateau.

The production of green forage and its pastoral value were evaluated using a new method based on floristic surveys taken in open fields and under tree crowns, proposed by MARUŞCA (2019).

Green fodder production and its pastoral value were evaluated using a new method based on floristic surveys taken in the open field and under tree crowns proposed by MARUŞCA, 2019.

The cow milk production per hectare was estimated using the following formula:

Milk prod. (l/ha) = $PV \times GSD \times 0.6$ where:

• PV = pastoral value index

- GSD = grazing season duration (in days)
- 0.6 = forage-to-milk conversion coefficient (MARUŞCA et al., 2018)

The assessment of the number of trees, component species, volume of timber and firewood, and fruit (acorn) production was carried out in three plots, each measuring 10,000 m² (Fig. 1).

The volume of the trees was calculated using formulas that take into account the trunk diameter and the height of the tree. The most commonly used general formula for calculating tree volume is:

 $V = BA \cdot h \cdot f = 0.7854 \cdot DBH^2 \cdot h \cdot f$ (GIURGIU, 1979) MARUSCA

- $V = \text{tree volume (m}^3)$
- $BA = basal area (m^2)$
- DBH = diameter at breast height (cm)
- h = total tree height (m)

Fig. 1. General Praporgescu Pasture and the location of the experimental plots,

• f = form factor, accounting for trunk shape (typically ranging from 0.4 to 0.7 for forest trees). Given that the trees present in pastures are generally old and grow in isolation, without competition, with wide crowns and thick trunks, their shape no longer conforms to the cylindrical form typical of forest-grown trees. Therefore, the value of the form factor, f, was empirically adjusted being accordingly, lower ranging between 0.35 and 0.40. As a result, volume estimates may have a margin of error, caused by the lack of precise field data on the volume of isolated trees on the grassland. It should also be noted that the volume

calculated using this formula includes only the trunk volume, from the base up to the top of the main stem and does not account for thick and secondary branches. To include volume of branches. the additional correction factor is applied, which for broadleaf species ranges from 0.30 % to 45 % of the trunk volume. For the experimental located on the General Praporgescu pasture, the trunk volume of the trees was determined by applying the previously presented formula, using a form factor value of f = 0.35, as the tree trunks were often irregular in shape (twisted, leaning) and showed various defects.

RESULTS AND DISCUSSIONS

The economic evaluation of the ASP system with downy oak was carried out based on the green biomass production and pastoral value obtained from the treeless pasture and the pasture under tree canopy (Table 1).

Specification	Unit	Open grassland	Under trees	Difference (%)
Green forage mass production	t/ha	1.90	4.14	218
Optimal livestock load	LU/ha	0.20	0.44	220
Pastoral value	Ind.	21.3	36.6	172
Cow milk production	L/ha	1850	3180	172

These data show that the herbaceous vegetation under tree is 172-218% higher crown compared to the open pasture without shade. In the three 10,000 m² plots. the structure and main characteristics of the pasture trees were studied (Table 2). The trunk volume of 218 downy oak trees pubescens) recorded (Ouercus across a 3-hectare inventory plot with diameters ranging from 8 to 56 cm and heights from 3.1 to 13.5 meters is 65 m³. This corresponds to an average of 21.67 m³/ha, based on a density of 73 trees per hectare. Additionally, for the seven isolated oriental hornbeam (Carpinus orientalis) trees located on the pasture (with diameters between 13

and 29 cm and heights from 7.1 to 10.5 m), the cumulative trunk volume is 1.1 m³. In the case of oriental hornbeam, the estimated volume of the two trees recorded per hectare is 0.37 m³. These figures refer strictly to the trunk volume, measured from the base to the top of the main stem. Downy oak exhibits slow growth and generally develops poorly formed trunks, which makes it unsuitable for use in construction or the furniture industry. As a result, its wood is considered usable exclusively as firewood. Similarly, oriental hornbeam is used exclusively as firewood, as its deformed trunk makes it unsuitable for other purposes, such as timber production.

Table 2

The main dendrometric parameters of the trees on the General Praporgescu pasture

Parameters	ST P	CĂ	MJ	Total
Number of trees	217	7	1	225
Mean DBH (cm)	30	22	33	
Min	8	13		
Max	56	29		
Coefficient of variation (%)	33	26		
Mean H (m)	9,0	9,0	7,1	
Min	3,1	7		
Max	13,5	11		
Coefficient of variation (%)	19	14		
Mean crown H (m)	6,7	6,7	4,9	
Min	1,4	4,9		
Max	9,9	8,3		

Parameters	ST P	CĂ	MJ	Total
Coefficient of variation (%)	24	22		
Crown ratio (%)	74	75	69	
Min	36	65		
Max	85	85		
Coefficient of variation (%)	9	10		
Mean crown projection area (m²)	58,0	48		
Min	9,5	28		
Max	149,0	66		
Coefficient of variation (%)	49	30		
Σ S crown projection / ha (m ²)	3987	145		

Symbols: ST P – Quercus Pubescens, CĂ – Carpinus orientalisMJ – Fraxinus ornus, Mean DBH – Mean diameter at the breast height; Mean H – Mean height; Min – Minimum recorded value, Max – Maximum recorded value, Crown ratio (%) of total tree height, Mean A – Mean crown projection area (m²), Σ S – Cumulative surface area

The market value of firewood for household use ranges between 750 and 850 lei/m^3 (1 leu =0,2 Euro), referring to processed logs cut into 30-50 cm lengths and delivered to distribution centers. In the case of firewood, the usable volume includes not only the trunk also thick and secondary branches, commonly referred to as mixed firewood, which typically adds an additional 25% to the trunk volume. This percentage adopted in consideration of the harsh environmental conditions in which downy oak grows in Dobrogea. Although the trees develop in full sunlight and without competition, factors that generally encourage expansion, stressful crown conditions lead to reduced crown development and limited branching, as the trees allocate most of their energy to trunk growth and survival. The total wood volume per tree, including trunk and branches, is calculated as: V total = V trunk + Vtrunk x 0.25. For the 3-hectare plot, the volume of thick and secondary branches, and treetop sections is:

16.2 m³ for downy oak, 0.3 m³ for oriental hornbeam. On a per-hectare basis, this equates to 5.4 m³/ha for downy oak, respectively 0.1 m³/ha for oriental hornbeam. The price for this category of firewood may reach up to 300 lei/m³. Given the severe environmental conditions on the Dobrogea, pastures of exploitation of downy oak wood for industrial purposes is not feasible, particularly considering ecological and historical value. Nevertheless. the economic evaluation of silvopastoral systems highlights the potential of these from productive pastures a perspective as well. In such systems, only dead or heavily declining trees should be removed, in line with sustainable management practices. Downy oak (Quercus pubescens) produces acorns, which serve as a valuable source of nutrients. lipids. including proteins, carbohydrates, mineral salts, and vitamins (CORLAȚEANU, 1984; NESTEROV et al.. 2006). silvopastoral system, particularly on pastures where trees benefit from

increased light and space downy oak exhibits more frequent and abundant fruiting compared to individuals growing in closed forest stands. However, under such conditions, acorns tend to be smaller. The species typically begins to produce acorns at the age of 30 to 40 years. While heavy mast fruiting years occur every 4 to 6 years, downy oak generally produces at least moderate quantities of fruit annually. The intensity of fruiting is influenced by various factors, including climate (temperature and drought conditions), soil characteristics, and physiological stress (e.g., water scarcity. pruning, and disease incidence). Although no acorn yield measurements were conducted in the study area, estimates from forestgrown oaks suggest an annual production of 600 to 1,200 kg/ha during mast years (NESTEROV et al., 2006). The labor cost for collecting one kilogram of acorns ranges from 8 to 10 lei/kg, based on the national document Unified Time and Production Norms for Forestry (MAPPM_RNP, Works 1997), under conditions of average fruiting.

We added to this the commercial markup of the reseller i, resulting the final price of one kilogram of downy oak acorns. From a forest-protective perspective, downy oak plays a critical role in establishing forest vegetation in arid, drought-prone areas such as the Dobrogean Plateau, where atmospheric and edaphic dryness constrain other species (SOFLETEA & CURTU, 2001). It can also be valued for its ecosystem services, such as microclimate improvement, providing shade for grazing animals, and contributing to landscape value. Based on weighted average calculations within the ASP system, where 41.32% of the area was under downy oak canopy and 58.68% was open pasture without tree cover, the average milk yield reached 2,400 liters/ha, representing a 30% increase compared to the adjacent open field without shade (Table 3). This improvement is likely due ameliorated to microclimatic conditions, such as reduced heat stress and increased animal welfare under partial canopy cover.

Table 3
An economic evaluation of the ASP system compared to pasture without trees

An economic evaluation of the AST system compared to pasture without trees				
	Pasture system			
Specification	ASP	FA	Positive difference in	
			favor of ASP, %	
Cow milk production (L/ha/year)	2400	1850	23	
Value (x 0,5 €/Liter)	1200	925	23	
Timber m3/ha at 120 year	28.04	-	X	
Timber m3/year	0.234	-	X	
Value (x 160 €/m3)	37	-	X	
Firewood m3/ha at 120 year	5.49	-	X	
Firewood m3/year	0.04	-	X	
Value (x 60 €/m3)	3	-	X	
Acorn kg/ha/year	75	-	X	
Value (x 1.8 €/kg)	135	-	X	

Total annual value	1375	925	33
FA = without trees - open fields			

Over its 120-year growth period of the trees, 28.04 m³ of timber and 5.49 m³ of firewood represent an average yearly value of around €40. To this, the contribution of acorns, averaging 75 kg/year, is added, with an estimated market value of €135/year. Taking into consideration the total annual economic benefits of silvopastoral systems (ASP) with downy oak (*Quercus pubescens*), including milk production, acorn yield, timber and firewood, the value

reaches $\[\in \] 1,375/year$. This represents a 33% increase compared to the $\[\in \] 925/year$ generated solely by milk production on adjacent pastures without trees (based on a conversion rate of $\[\in \] 1 = 5$ lei). These findings underscore the superior economic performance of ASP systems in the Dobrogea region, particularly those incorporating downy oak when compared to traditional open pastures.

CONCLUSIONS

Pastures within agrosilvopastoral systems incorporating (ASP) *Quercus pubescens* in the Dobrogea region demonstrate superior productivity and economic value compared to pastures without trees. Milk production in the studied ASP system reaches 2,400 liters per hectare, representing a 23% increase compared to 1,850 L/ha on adjacent treeless pastures. The total annual economic value generated by the agrosilvopastoral (ASP) system with downy oak (Ouercus pubescens), comprising milk (€1,200), acorns

(€135), and timber and firewood (€40), amounts to €1,375 per hectare (at an exchange rate of $\in 1 = 5$ RON). This represents a 33% increase compared to the €925/ha derived solely from milk production on grassland without trees. These values highlight the importance conserving and expanding ASP systems, particularly under growing pressures of climate change, to their higher economic performance and enhanced ecological resilience.

REFERENCES

- 1. Ciubotaru A., Păun M., (2018) Structura arboretelor. Editura Universității Transilvania din Brasov.
- 2. Corlățeanu S., (1984) Produsele accesorii ale pădurii. Editura Ceres, Bucuresti.
- 3. Giurgiu V., (1979) Dendrometrie și auxologie forestieră. Editura Ceres, București.
- 4. Hartel T., Măcicășan V., Maloș C., Rákosy L., (2017) Lessons learnt: Wood-pastures in Transylvania, Romania,

- https://www.agforward.eu/documents/LessonsLearnt/WP2_RO_Transylvania Lessons learnt.pdf
- 5. Leahu I., (2001) Amenajarea pădurilor. Editura Didactică și Pedagogică, București, 616 p.
- 6. MAPPM_RNP,(1997) Norme de timp și producție unificate pentru lucrări din silvicultură.
- 7. Maruşca T., (2012) Sistemul agrosilvopastoral durabil, în contextul încălzirii globale a climei. Revista de Silvicultură și Cinegetică, XVII (30). Editura Societatea Progresul Silvic, Brașov.
- 8. Maruşca T., Blaj V. A., Andreoiu Andreea C., Zevedei P. M., (2018) Long term influence of botanical composition of alpine pastures on cow milk production, Proceeding of the 27th General Meeting of the European Grassland Federation, EGF, (23): 283 285, Cork, Ireland, 17 21 iunie.
- 9. Maruşca T., (2019) Contributions to the evaluation of pasture productivity using the floristic releve. Romanian Journal of Grassland and Forage Crops BDI (19), Cluj Napoca: 33-47.
- 10. Maruşca T., Taulescu Elena, Memedemin D., (2020) Preliminary study of agrosilvopastoral systems from Romania, Romanian Journal of Grassland and Forage Crops (22), Iaşi: 25-32.
- 11. Marușca T. (2022) Praticultură și pastoralism în cercetarea științifică, Editura Universității Transilvania din Brașov, (311).
- 12. Mihăilă Elena, Costăchescu C., Dănescu F., Drăgoi S., (2010) Sisteme agrosilvice, Editura Silvică, București.
- 13. Nesterov V., Negruțiu A., Ionescu O., Gărgărea P., Adămoaia I., (2006) Furaje și ogoare pentru vânat. Editura Orion.
- 14. Olea L., San Miguel-Ayanz A., (2006) The spanish dehesa. A traditional Mediterranean silvopastoral system linking production and natural conservation, 21st. General Meeting of EGF: 3-13, Badajoz, Spain.
- 15. Sharrow S.H., Flechter R.A., (1994) Trees and Pastures: 40 years of agrosilvopastoral experience in Western Oregon, USA, Agroforesty Symposium, National Agroforesty Center.
- 16. Stanescu V., Şofletea N., Popescu O., (1997) Flora forestieră lemnoasă a României. Editura Ceres, București.
- 17. Şofletea N., Curtu L., (2001) Dendrologie. Editura "Pentru Viață", Brașov.
- 18. Taulescu Elena, Marușca T., Zevedei P.M., Andreoiu Andreea Cristina, Comșia Cristina Carmen, (2022). Interractions between Pyrus piraster trees (Wild pear) and grassland in an agrosolvopastoral system, Academy of Romanian Scientists Series on Agriculture, Silviculture and Veterinary Medicine Sciences, 11(1): 28 37.

RESEARCH ON THE BEHAVIOR OF PERENNIAL GRASSES AND LEGUMES IN SIMPLE AND COMPLEX MIXTURES IN THE CONDITIONS OF THE MOLDOVIAN FOREST-STEPPE

Adrian-Ilie NAZARE *,***, GRIGORAŞ Bogdan-Ioan. *, Vasile VÎNTU*, Costel SAMUIL *

* Ion Ionescu de la Brad Iași University of Life Sciences (IULS), 3 Mihail Sadoveanu Alley, 700490 Iași, România **Corresponding author e-mail: adrian.nazare@iuls.ro

Abstract

Due to the low productivity of permanent grasslands, recent research has focused on sown temporary grasslands, which offer a high potential for production and superior forage quality. This paper presents the results of a bifactorial experiment conducted in the spring of 2024 at the Ezăreni Farm (USV Iași), with the objective of evaluating the influence of the species or mixture of perennial grasses and legumes, and fertilization on plant development in the first year of vegetation. The factors studied were A – the sown species or mixture (10 graduations) and B - the level of fertilization with mineral fertilizers (4 graduations). Observations were made on the number of shoots/m² and the height of the plants at harvest. The results showed that complex mixtures including species such as Medicago sativa and Festuca pratensis generated the highest value of the number of shoots, especially under conditions of high fertilization ($N_{100}P_{100}K_{100}$). Plant height was significantly influenced by the presence of Onobrychis viciifolia, especially in the intensively fertilized variants. The conclusions highlight the efficiency of using perennial mixtures and balanced fertilization in increasing the productive potential of temporary meadows, in the context of climate change

Keywords: temporary meadows, mineral fertilization, plant height, yield.

INTRODUCTION

Due to the low productivity of permanent grasslands, the need was felt to closely study temporary grasslands. **Temporary** sown grasslands are sown and managed with the expectation of achieving high production and high-quality forage (Søegaard K. et al. 2007). Research conducted at national and international levels has shown the benefits of growing forage plants but has also led to the establishment of standard mixtures of such forage plants.

Interspecific competitiveness was influenced by the percentage of participation in the sowing rate of the species in the mixture, the mineral fertilizers used, the biological characteristics of the studied species and the climatic conditions specific to each crop year (Vîntu V. et al. 2024). Fertilization with complex mineral fertilizers leads in most cases to higher dry matter production regardless of the species or mixture of perennial grasses and legumes (Zait T. et al. 2022).

The composition of the mixture has a significant effect on biomass yield and quality indices, rather than on species diversity (Tahir M. et al., 2022). Research results have shown that the association of white clover with medium-sized perennial grass could provide the best option for temporary meadows (Piano E. et al., 1995). Some grass species are also studied for their anti-erosion effect. such as Festuca arundinacea plants, but also their cultivation temporary meadows mixed with other grasses or perennial legumes, vineyards grass strips in orchards, the biomass production being successfully used as green mass or hay in feeding farm animals. (Tîtei V. et al., 2019; 2022).

The quality of the forage obtained from temporary pastures is influenced by the doses of fertilizers applied, the proportion of the species' participation in the sowing rate, but also by the climatic

conditions during the exploitation period. (Boureanu C. et al., 2016). The quality of forage obtained from sown meadows is influenced by the percentage of participation of each species in the mixture, but also the different degree of fertilization (Samuil C. et al., 2012). Since the 20th century, research on complex mixtures of perennial grasses and legumes has shown benefits in their cultivation. well as standardization of perennial grass and legume species across different cropping areas (Sanderson M.A. et al., 2005).

The productivity of grasslands in dry areas can be influenced by the choice of more drought-tolerant plants for sowing. (Skinner R.H. et al., 2004). Moderate use of mineral and organic fertilizers brings higher yields, also having a positive effect on biodiversity and forage quality (Samuil C. et al., 2018).

MATERIAL AND METHOD

The experiment was established in the experimental field of the Ezăreni Farm (47°05'-47°10' north latitude and 27°28'-27°33' east longitude) belonging to the Didactic Station of the Iasi University of Life Sciences, according to the method of subdivided plots with two factors (of the 10x4 type), in 3 repetitions, having the dimensions of a plot of 1 x 9 m (9 m2), the total surface of the experience being of 1280 m².

The goal is to develop and standardize mixtures of perennial forage species under the conditions of climate change in the experimental area. In the first part, the influence of the mixture and fertilization on the growth and development of plants within the mixtures will be studied.

The study factors were:

Factor A: the species or mixture of perennial grasses and

legumes, with 10 gradations: a_1 -Onobrychis viciifolia Scop. (100%) (control); a₂ – Onobrychis viciifolia Scop. (75%) and Bromus inermis (25%); Leyss. a₃-Onobrychis viciifolia Scop. (50%) and Bromus inermis Levss. (50%);Onobrychis viciifolia Scop. (25%) and *Bromus inermis* Leyss. (75%); a₅ – Medicago sativa L. (100%); a₆ – Medicago sativa L. (75%) and Festuca pratensis (25%); a₇ -Medicago sativa L. (50%) and Festuca pratensis (50%); a₈ -Medicago sativa L. (25%) and Festuca pratensis (75%); a₉ -Medicago sativa L. (20%), Lotus corniculatus L. (15%); Festuca pratensis (30%); Lolium perenne L. (10%) and Dactylis glomerata L. (25%) and a_{10} – *Onobrychis* viciifolia Purpose. (20%), Lotus corniculatus L. (15%); Agropyron pectiniforme L. (30%); Bromus inermis Leyss. (25%) and Lolium perenne L. (10%).

Factor B - fertilization with mineral fertilizers, with 4 graduations: b_1 -unfertilized (C); b_2 - $N_{50}P_{50}K_{50}$; b_3 - $N_{75}P_{75}K_{75}$; b_4 - $N_{100}P_{100}K_{100}$.

Observations and determinations carried out in the field during the entire vegetation period, the following indices being observed: number of shoots/m; plant height at harvest (cm).

The amount of green mass per hectare was determined by weighing the production obtained after each scythe on the harvestable surface of 8 m² and reported per hectare. The content in dry matter (s.u.) was determined by drying in an oven, at a temperature of 105°C, for 3 hours; standard - SR ISO 6496/2001. Height, number of shoots and and yield data were processed using ANOVA, applying the Least Significant Difference (LSD) test.

RESULTS AND DISCUSSION

The study analyzed the influence of fertilization with complex mineral fertilizers based on nitrogen, phosphorus and potassium on the number of shoots formed by the time of harvest, in the species *Onobrychis viciifolia* and *Medicago sativa*, cultivated both alone and in simple and complex mixtures (table 1).

The data obtained revealed a significant variation in the number of shoots depending on the combination of species type (or

mixture) and fertilization level applied.

Thus, the values ranged between 508 shoots/m², in variant a₁ b₁ (*Onobrychis viciifolia* 100%, unfertilized), and 3092 shoots/m², in variant a₁₀b₄ (complex mixture consisting of *Medicago sativa* 20%, *Lotus corniculatus* 15%, *Festuca pratensis* 30%, *Lolium perenne* 10% and *Dactylis glomerata* 25%), fertilized with the maximum dose of N₁₀₀P₁₀₀K₁₀₀ (table 1).

Table 1

Influence of the interaction between the species or mixture of perennial grasses and legumes and fertilization with mineral fertilizers on the number of shoots/ m^2 , in the first

year of vegetation

	Number of	Difference			
Variant		shoots		Meaning	
		Shoots/m ²	Shoots/m ²	%	
			b ₁ - O.v. (100		
a ₁ - O.v. (100%) (mt.)	b ₁ - unfertilized (mt.)	508	Control	100	Control
	b ₂ - N ₅₀ P ₅₀ K ₅₀	620	112	122,0	
	b ₃ - N ₇₅ P ₇₅ K ₇₅	664	156	130,7	
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	736	228	144,9	
	b ₁ - unfertilized	792	284	155,9	
$a_2 - O.v. (75\%) + B.i.$ (25%)	$b_2 - N_{50}P_{50}K_{50}$	956	448	188,2	**
	$b_3 - N_{75}P_{75}K_{75}$	1072	564	211,0	***
	$b_4 - N_{100}P_{100}K_{100}$	1124	616	221,3	***
	b ₁ - unfertilized	1000	492	196,9	**
a_3 - $O.v.$ (50%) + $B.i.$	$b_2 - N_{50}P_{50}K_{50}$	1160	652	228,3	***
(50%)	$b_3 - N_{75}P_{75}K_{75}$	1240	732	244,1	***
	$b_4 - N_{100}P_{100}K_{100}$	1348	840	265,4	***
	b ₁ - unfertilized	688	180	135,4	
a_4 - $O.v.$ (25%) + $B.i.$	b ₂ - N ₅₀ P ₅₀ K ₅₀	744	236	146,5	
(75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	880	372	173,2	*
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	964	456	189,8	**
	b ₁ - unfertilized	1200	692	236,2	***
a ₅ - M.s. (100%)	b ₂ - N ₅₀ P ₅₀ K ₅₀	1700	1192	334,6	***
	b ₃ - N ₇₅ P ₇₅ K ₇₅	1308	800	257,5	***
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	1816	1308	357,5	***
	b ₁ - unfertilized	1492	984	293,7	***
a_6 - $M.s.$ (75%) + $F.p.$	b ₂ - N ₅₀ P ₅₀ K ₅₀	2100	1592	413,4	***
(25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2508	2000	493,7	***
(25 /0)	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	2668	2160	525,2	***
$a_7 - M.s. (50\%) + F.p.$	b ₁ - unfertilized	1764	1256	347,2	***
	b ₂ - N ₅₀ P ₅₀ K ₅₀	2024	1516	398,4	***
(50%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2100	1592	413,4	***
(= = , =)	$b_4 - N_{100}P_{100}K_{100}$	2664	2156	524,4	***
	b ₁ - unfertilized	2160	1652	425,2	***
a_8 - $M.s.$ (25%) + $F.p.$	b ₂ - N ₅₀ P ₅₀ K ₅₀	2284	1776	449,6	***
(75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2600	2092	511,8	***
(1370)	$b_4 - N_{100}P_{100}K_{100}$	2704	2196	532,3	***
	b_1 - unfertilized	2236	1728	440,2	***
a_9 - $M.s.$ (20%) + $L.c.$	b_1 - differentized b_2 - $N_{50}P_{50}K_{50}$	2732	2224	537,8	***
(15%) + F.p. (30%) +	$b_3 - N_{75}P_{75}K_{75}$	2968	2460	584,3	***
L.p. (10%) + D.g. (25%)	$b_4 - N_{100}P_{100}K_{100}$	3092	2584	608,7	***
	b_1 - unfertilized	1440	932	283,5	***
a_{10} - $O.v.$ (20%) + $L.c.$	b_1 - unfertifized b_2 - $N_{50}P_{50}K_{50}$	1800	1292	354,3	***
(15%) + A.p. (30%) + B.i. (25%) + L.p. (10%)		1592	1084		***
	b ₃ - N ₇₅ P ₇₅ K ₇₅		1428	313,4	***
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	1936 DL 5% =	319	381,1	
		DL 3% = DL 1% =	423	1	
	DL 0,1% =	547	1		

The highest values of shoot number were recorded in the variants that included *Medicago sativa* and *Festuca pratensis*, grown in various mixtures, both simple and complex.

In general, regardless of the composition of the species used, fertilization with complex mineral fertilizers resulted in a significant increase in the number of shoots per unit area.

Compared to the control variant, all other variants analyzed presented very statistically significant differences.

During the observations, the height of the shoots at the time of harvest was determined for the species *Onobrychis viciifolia* and *Medicago sativa*, cultivated either individually or in simple or complex mixtures, under different fertilization conditions with complex mineral fertilizers based on nitrogen, phosphorus and potassium (table 2).

The analysis of the interaction between the type of species (or mixture) and the applied fertilization revealed values ranging from 36.7 cm, in variant a_8 b_1 (simple mixture consisting of *Medicago sativa* 25% + *Festuca pratensis* 75%, unfertilized), and 77.5 cm, in variant a_1 (*Onobrychis viciifolia* 100%), fertilized with the maximum dose of $N_{100}P_{100}K_{100}$ (table 2).

Regarding plant height, the highest values were recorded in the variants where Onobrychis viciifolia Scop. was present, either grown alone or in mixtures.

In general, fertilization with nitrogen and phosphorus-based mineral fertilizers led to an increase in plant height, regardless of the type of species or mixture used. With the exception of the variant grown exclusively with *Onobrychis viciifolia*, all other fertilized variants showed statistically significant differences compared to the control (table 2).

Regardless of the fertilization variant the or composition of the mixture, climatic conditions, especially the amount of precipitation, significantly influenced processes the germination, emergence, growth and development.

The height of the plants in the first cut, in the first year of vegetation, was largely determined of precipitation by the level recorded in the first part of the vegetation period. In the first year of vegetation, a single mowing was carried out. The analysis of the data obtained shows that the dry matter (DM) yields varied significantly depending species on the composition and the fertilization regime applied (table 3). The lowest yields were recorded in variant a₈, a simple mixture consisting Medicago sativa (25%) and Festuca pratensis (75%), unfertilized, with a production of 1776 kg/ha DM. At the opposite pole, variant represented by Onobrychis viciifolia (100%) grown in monoculture and fertilized with $N_{100}P_{100}K_{100}$, recorded the highest production, of 5745 kg/ha DM (table 3).

 $Table\ 2$ Influence of the interaction between the species or mixture of perennial grasses and legumes and fertilization with mineral fertilizers on plant height, in the first year of vegetation

vegetation							
		Plant height	Diferen	nța	Meaning		
Va	nriant	cm	cm	%			
				00%), un	fertilized		
	b ₁ - unfertilized (mt.)	77,5	Control	100	Control		
a ₁ - O.v. (100%)	b ₂ - N ₅₀ P ₅₀ K ₅₀	75,3	-2,2	97,2			
(mt.)	b ₃ - N ₇₅ P ₇₅ K ₇₅	75,3	-2,2	97,2			
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	72,0	-5,5	92,9			
	b ₁ - unfertilized	71,2	-6,3	91,8			
a_2 - $O.v.$ (75%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	74,8	-2,7	96,6			
B.i. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	69,3	-8,2	89,5			
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	71,2	-6,3	91,8			
	b ₁ - unfertilized	69,8	-7,7	90,1			
a_3 - $O.v.$ (50%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	70,0	-7,5	90,3			
B.i. (50%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	69,2	-8,3	89,2			
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	68,8	-8,7	88,8			
	b ₁ - unfertilized	72,7	-4,8	93,8			
a ₄ - O.v. (25%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	69,7	-7,8	89,9			
B.i. (75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	75,3	-2,2	97,2			
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	73,3	-4,2	94,6			
	b ₁ - unfertilized	45,0	-32,5	58,1	000		
. M (1000/)	b ₂ - N ₅₀ P ₅₀ K ₅₀	46,2	-31,3	59,6	000		
a ₅ - M.s. (100%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	42,8	-34,7	55,3	000		
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	50,3	-27,2	64,9	00		
	b ₁ - unfertilized	44,2	-33,3	57,0	000		
a_6 - $M.s.$ (75%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	45,7	-31,8	58,9	000		
F.p. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	44,7	-32,8	57,6	000		
-	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	47,3	-30,2	61,1	00		
	b ₁ - unfertilized	49,3	-28,2	63,7	00		
$a_7 - M.s. (50\%) +$	b ₂ - N ₅₀ P ₅₀ K ₅₀	47,0	-30,5	60,6	00		
F.p. (50%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	49,2	-28,3	63,4	00		
•	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	53,8	-23,7	69,5	О		
	b ₁ - unfertilized	36,7	-40,8	47,3	000		
a_8 - $M.s.$ (25%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	45,8	-31,7	59,1	000		
F.p. (75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	44,5	-33,0	57,4	000		
1	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	41,5	-36,0	53,5	000		
a ₉ - M.s. (20%) +	b ₁ - unfertilized	43,2	-34,3	55,7	000		
L.c. (15%) + F.p.	b ₂ - N ₅₀ P ₅₀ K ₅₀	44,8	-32,7	57,8	000		
(30%) + L.p. (10%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	45,3	-32,2	58,5	000		
+ D.g. (25%)	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	47,7	-29,8	61,5	00		
a ₁₀ - O.v. (20%) +	b ₁ - unfertilized	59,0	-18,5	76,1	0		
L.c. (15%) + $A.p.$	b ₂ - N ₅₀ P ₅₀ K ₅₀	56,5	-21,0	72,9	0		
(30%) + B.i. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	59,2	-18,3	76,3	0		
+ <i>L.p.</i> (10%)	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	66,3	-11,2	85,6			
	•	DL 5% =	17,9				
		DL 1% =	23,7				
		DL 0,1% =	30,6				

Table 3 Influence of the interaction between the species or mixture of perennial grasses and legumes and fertilization with mineral fertilizers on the production of DM in the first year of vegetation

year of vegetation							
Va	ariant	Production of DM	Diffe	rence	Meaning		
		kg/ha	kg/ha %				
	b ₁ - unfertilized (mt.)	3263	Control	100	Control		
a ₁ - O.v. (100%)	$b_2 - N_{50}P_{50}K_{50}$	5159	1895,5	158,1	***		
(mt.)	b ₃ - N ₇₅ P ₇₅ K ₇₅	4444	1181,0	136,2	***		
	$b_4 - N_{100}P_{100}K_{100}$	5745	2482,0	176,1	***		
	b ₁ - unfertilized	3854	590,5	118,1	**		
a ₂ - O.v. (75%) +	$b_2 - N_{50}P_{50}K_{50}$	3913	650,0	119,9	***		
B.i. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	3963	699,2	121,4	***		
	$b_4 - N_{100}P_{100}K_{100}$	5267	2003,3	161,4	***		
	b ₁ - unfertilized	2893	-370,0	88,7	0		
a_3 - $O.v.$ (50%) +	$b_2 - N_{50}P_{50}K_{50}$	3267	3,3	100,1			
B.i. (50%)	$b_3 - N_{75}P_{75}K_{75}$	3577	314,0	109,6			
	$b_4 - N_{100}P_{100}K_{100}$	4037	773,5	123,7	***		
	b ₁ - unfertilized	2703	-560,2	82,8	00		
a ₄ - O.v. (25%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	3884	620,7	119,0	***		
B.i. (75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	5093	1830,0	156,1	***		
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	4703	1440,0	144,1	***		
	b ₁ - unfertilized	2703	-560,2	82,8	00		
14 (1000()	b ₂ - N ₅₀ P ₅₀ K ₅₀	3824	560,3	117,2	**		
a ₅ - M.s. (100%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	4994	1730,7	153,0	***		
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	4397	1133,5	134,7	***		
	b ₁ - unfertilized	1978	-1285,0	60,6	000		
a_6 - $M.s.$ (75%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	2348	-915,0	72,0	000		
F.p. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2620	-643,7	80,3	000		
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	2838	-425,2	87,0	0		
	b ₁ - unfertilized	2673	-590,0	81,9	00		
a ₇ - M.s. (50%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	2743	-520,8	84,0	00		
F.p. (50%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2971	-292,5	91,0			
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	3163	-100,0	96,9			
	b ₁ - unfertilized	1776	-1487,5	54,4	000		
a ₈ - M.s. (25%) +	b ₂ - N ₅₀ P ₅₀ K ₅₀	2914	-349,7	89,3	0		
F.p. (75%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	2167	-1096,0	66,4	000		
	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	3712	449,0	113,8	*		
a ₉ - M.s. (20%) +	b ₁ - unfertilized	3485	222,0	106,8			
L.c. (15%) + F.p.	b ₂ - N ₅₀ P ₅₀ K ₅₀	3633	370,0	111,3	*		
(30%) + L.p. (10%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	4867	1603,3	149,1	***		
+ D.g. (25%)	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	4306	1043,0	132,0	***		
a ₁₀ - O.v. (20%) +	b ₁ - unfertilized	2893	-370,0	88,7	0		
L.c. (15%) + A.p.	b ₂ - N ₅₀ P ₅₀ K ₅₀	3233	-30,0	99,1			
(30%) + B.i. (25%)	b ₃ - N ₇₅ P ₇₅ K ₇₅	3698	435,0	113,3	*		
+ <i>L.p.</i> (10%)	b ₄ - N ₁₀₀ P ₁₀₀ K ₁₀₀	4801	1537,3	147,1	***		
		DL 5% =	345,4				
		DL 1% =	458,2				
		DL 0,1% =	591,9				

Research has shown that the application of mineral fertilizers based on nitrogen, phosphorus and potassium had a positive effect on production, with most of the differences between the variants being statistically significant.

Production was influenced both by the fertilization dose and by the species or combinations used. At the first mowing, in the first year of vegetation, the highest productions were obtained in variant a_1 , where Onobrychis viciifolia was grown alone and fertilized with high doses of NPK. At the same time, the variants in which this species was predominant generated higher productions even under moderate fertilization conditions or even in the absence of fertilization.

Good yields were also obtained in the case of complex mixtures, such as variants a₈ and a₉, where statistically significant production increases were recorded (table 3).

CONCLUSIONS

In the first year of vegetation, the highest number of shoots was recorded in the variants that included the species *Medicago sativa* L. and *Festuca pratensis* L., cultivated in both simple and complex mixtures.

The average number of shoots per square meter varied between 632 shoots/m² in variant a₁, composed exclusively of Onobrychis viciifolia Scop. (100%), and 2757 shoots/m² in variant a₉, a complex mixture composed of *M.s.* (20%), *L.c.* (15%), F.p. (30%), L.p. (10%) and D.g.(25%). The height of the shoots, in the first year of vegetation, ranged between 36.7 cm in variant a₈b₁ (simple mixture: M.s. 25% + F.p.75%) and 77.5 cm in variant at (O.v. 100%). fertilized with $N_{100}P_{100}K_{100}$. The highest plant height values were observed in the variants in which the species Onobrychis viciifolia Scop. was present.

The vegetative development

of plants is significantly influenced both by the supply of essential nutrients: nitrogen, phosphorus and potassium, provided by fertilization, and by the genetic potential of the cultivated species.

In the first year of vegetation, a single mowing was carried out, and dry matter production showed significant variations, ranging from 1776 kg/ha DM in variant a₈ - simple mixture consisting of *Medicago* sativa (25%) and *Festuca pratensis* (75%), unfertilized - and 5745 kg/ha DM in variant a₁, where *Onobrychis viciifolia* (100%) fertilized with N₁₀₀P₁₀₀K₁₀₀.

The highest productions were obtained in the variants in which *Onobrychis viciifolia* Scop. was present in a proportion greater than 50%, highlighting the favorable influence of this species on the level of production.

The application of mineral fertilizers based on nitrogen, phosphorus and potassium determined significant increases in dry matter production in the first year

of vegetation, the differences between the variants being, in most cases, statistically significant.

REFERENCES

- 1. Boureanu C., Stavarache M., Samuil C., Vintu V., 2016. Influence of fertilization on forage quality of the simple mixtures between Bromus inermis Leyss. and Onobrychis viciifolia Scop. Lucrări Științifice, 59(1), 189-192.
- 2. Naie M., Popa L.D., Mîrzan O., Bărcan M.D., Leonte A., Muscalu A., Antonescu M.C., 2022. The quality of mixtures of perennial grasses and legumes exploited in hay regime under central of Moldova conditions. Scientific Papers. Series A. Agronomy, 65(2).
- 3. Samuil C., Stavarache M., Sirbu C., Vintu V., 2018. Influence of sustainable fertilization on yield and quality food of Mountain Grassland. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 410-417.
- 4. Samuil C., Vintu V., Sirbu C., Surmei G.M., 2012. Behaviour of fodder mixtures with alfalfa in north-eastern Romania.
- 5. Sanderson M.A., Skinner R.H., Barker D.J., Edwards G.R., Tracy B.F., Wedin D.A., 2004. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 44(4), 1132-1144.
- 6. Skinner R.H., Gustine D.L., Sanderson M.A., 2004. Growth, water relations, and nutritive value of pasture species mixtures under moisture stress. Crop science, 44(4), 1361-1369.
- 7. Søegaard K., Gierus M., Hopkins A., Halling M., 2007. Temporary grassland-challenges in the future.
- 8. Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.H.; Yang, W.; Yan, Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy 2022, 12, 1449.
- 9. Țîței V., Blaj V.A., Marușca T., 2019. The productivity and the quality of green mass and hay from romanian cultivars of Festuca arundinacea, grown in the Republic of Moldova. Journal of Plant Development, 26, 189.
- 10. Ţîţei V., Coşman S., Coşman V., Olar M., 2022. The quality of fodder from some Romanian cultivars of Festuca arundinacea in the Republic of Moldova. Romanian Journal of Grasslands and Forage Crops, 25, 47-57.
- 11. Vîntu V., Zaiţ T., Samuil C., Nazare, A.I., 2024. The Influence of

- Competition Between Festuca arundinacea Schreb. And Trifolium pratense L., Grown in Simple Mixtures, on the Quality of the Fodder. Agronomy, 14(12), 2934.
- 12. Zaiţ T., Nazare A. I., Samuil C., Vîntu V., 2022. Species productivity research for Festuca arundinacea Schreb. and Trifolium pratense L. cultivated alone or in simple mixtures, in the first year of vegetation under the conditions of the Moldavian forest-steppe. Romanian Journal of Grasslands and Forage Crops, 26, 9.

EVALUATION OF MEADOW FESCUE (FESTUCA PRATENSIS HUDS.) GERMPLASM FOR BREEDING PURPOSES

Monica Alexandrina TOD *, Mironela BĂLAN*, Victor Tîtei**, Ana GUŢU**

*Grassland Research – Developement Institute Braşov, Cucului Street,no5. Braşov, RO **Alexandru Ciubotaru, National Botanic Garden (Institute), Republic of Moldova, no 18 Pădurii, 2002, Chișinău, MD

monica.tod@pajişti-grassland.ro

Abstract

The aim of research is the evaluation of the germplasm through observations and measurements to choose valuable resources of initial breeding material. Were analyzed 16 accessions of Festuca pratensis Huds., in order to evaluate the genetic diversity within and among the breeding material sources concerning: heading date, abundance of vegetative and generative tillers, plant height, leaf diseases resistance, shape of plant and the correlation between traits. The traits investigated were analysed through the correlation matrix to estimate the correlations between the morpho - physiological characters The vegetative tillers are distinct significant positive correlation (0,81) with generative tillers and with plant height (0,77) and negative correlation with rust resistance (-0,06) and with heading date (-0,22). The generative tillers are distinct significant positive correlation (0,80) with plant height also.

Keywords: genotypes, meadow fescue, disease resistance, generative tillers, vegetative tillers.

INTRODUCTION

The meadow fescue is one of the most important perennial forage grasses for meadows and grasslands. It is a medium-sized species, with rich foliage and fine leaves, which gives it a very high production and high nutritional value. It is resistant to frost and that is why it is very widespread in countries with harsh winters. particularly in the northern hemisphere. (VARGA et al, 1998). The cultivation zone is from the steppe area, up to the spruce forests. It grows best on clayey, heavy, nutrient-rich soils, but it can be found on many types of soil, except for dry or poor ones. (MOCANU et al..2021). The forage mixtures which include meadow fescue are used both by grazing and mowing, for hay and semi-hay, contributing to ensuring quality forage. (MOGA I., SCHITEA M., 2000). Meadow fescue is compatible with the most important forage legumes (white and red clover, alfalfa, sainfoin) and perennial forage grasses, including timothy (Phleum pratense), tall fescue (Festuca arundinacea) and pernnial ryegrass (Lolium perenne). Festuca pratensis has a great ability to hybridize with perennial ryegrass (Lolium perenne) and Italian rvegrass (Lolium multiflorum). The prime aim in Festulolium cultivar

development has been to combine the agronomically desirable traits of Lolium (high forage yield and fast installation) and the stress resistance (frost and diseases resistance) of Festuca species. Suitable amphiploid and introgression breeding approaches have been developed (HUMPREYS M.W., Zwierzkowsky, Z., 2020). The genetic variability of all traits important for breeding proces represents a basic prerequisite for selection, which ensures the succes of the breeding process. (BABIC et 2018, 2023). BABIC et al. (2018) found the presence significant variability within meadow fescue wild populations cultivars studied and for morphological, productive and quality traits. THOMAS et al (1996) found a considerable genetic diversity within Festuca pratensis for yield potential and for survival and high yield stability during both extreme drought and osmotic stress.

The main objectives of the breeding activity is to create cultivars with both high forage and seed yield, forage quality, drought tolerance, good diseases resistance and persistency. In the present study a phenotypic characterization is given for 16 accessions of Festuca pratensis in order to evaluate the genetic diversity within and among material breeding sources concerning: heading date. of vegetative abundance and generative tillers, plant height, leaf diseases resistance, shape of plant and the correlation between traits. Forage analysis using measurement has been a major application of the technique largely due to the work of J.S. Shenk, M. Westerhaus, W. Barton, G. Marten, N. Martin, and a host of others who improved upon the technique and worked toward it's widespread use and acceptance among scientists as a valid analytical technique.

MATERIAL AND METHOD

The experiment was conducted in a field trial of the Research and Development Institute for Grasslands - Brasov, during the years 2023-2024. The plant material used in this experiment represented by 16 accessions breeding lines, with a total of 623 individual plants. The plants were obtained by sowing in March 2023, in the greenhouse, in rows in trays, followed by individual transplanting into small plastic pots. Maintenance works were applied: watering. weeding, phytosanitary treatments

infections, prevent Pythium pruning stimulate repeated to twinning. Particular attention is paid to ensuring equal treatment to each plant to avoid variability due to external factors, so that even from this early phase individual plants express their true genetic potential. When seedlings the were sufficiently well developed, with vigorous shoots and a welldeveloped root system, they were the transplanted into field. individual plants, at equal distances of 50 cm, 10 plants per row and 36

Table 1

rows/per block. The meteorological conditions in the years 2023-2024 (table 1) indicate a drier and warmer period compared to the multiannual average. Considering the recorded temperatures, in both years the values exceeded the multiannual average, with 0,6°C in 2023 and with 2.7°C in 2024. From the point

of view of precipitation, the year 2023 recorded a total deficit of -182.8 mm and of -121,3 mm during the vegetation period, and in 2024 a total deficit of -22.6 mm and of 43,2 mm in the vegetation period compared to the multiannual average.

Meteorological conditions from Braşov stationary 2023-2024

Years	Annual average I - XII	Deviation	Vegetation period IV - IX	Deviation
Temperature (°C)				
2023	10,1	+2,3	14,8	+0,6
2024	11,4	+3,6	17,6	+2,7
Average 59 years	7.8	0	14.2	0
Precipitation (mm)				•
2023	570,4	-182,8	407,8	-121,3
2024	730,6	-22,6	485.9	- 43,2
Average 59 years	753.2	0	529.1	0

During the vegetation period following of 2024 year, the observations and determinations have been made heading date (inflorescence emergence), growth inflorescences habit (before emergence) (E - erect, S - semierect, P - prostate), number of vegetative tillers, scale 1 - 5, number of generative tillers, scale 15, plant heigh, the distance in cm from the plant base to the of panicle after anthesis, resistance to rust (% of healthy plants). The morphological and phenological characters were scored by visual inspection or measurements. The recorded data were statistically processed in the Statistica 7 software package.

RESULTS AND DISCUSSIONS

Regarding precocity, there were 8 days between the earliest: 6 May and the latest: 14 May, most of the genotypes having the heading date during 7-10 May. The growth habit was in most cases erect: 8 genotypes, followed by semi-erect: 5 genotypes and semi-erect - prostrate: 2 genotypes and prostrate:

1 genotype. The shape of the bush allows selection for different ways of use. Regarding the number of vegetative and generative tillers, genotypes with both vegetative tillers and abundant generative tillers were highlighted: Trans 2/2019, Trans 2/2020, Trans 2/2021, Trans 2/2022 and the

Table 2

Moldova Botanical Garden. representing valuable biological materials for a new cycle of selection. Selection for improving seed yielding capacity correlated with a high forage yield is a major objective in breeding of grass species (BALAN M., 1999). The height of the plants did not vary widely, being on average between 68.3 cm for the Trans 2/2017 and

90.8 for Trans 2/2021. Disease resistance was noted in the case of rust attack, the resistant plants being the least numerous in the Rozon accession: 31%, the most resistant being Cosmopolitan: 87.5%. Rust, transmitted by *Puccinia* sp is the most damaging grass disease both in frequency and intensity of attack. (Table 2)

Traits evaluation of *Festuca pratensis* accessions

Nr crt.	Accessions	Plants nr	Heading date	Growth habit	Vegetative tillers	Generative tillers	Plant height (cm)	Rust resistan ce (%)
1	Trans 2/2015	38	7.05	SE	4	4	77.5	73.7
2	Trans 2/2017	47	10.05	P	3	3	68.3	55.3
3	Trans 2/2018	39	6.05	SE	4	4	78.0	61.5
4	Trans 2/2019	49	9.05	Е	5	5	79.8	67.3
5	Trans 2/2020	40	9.05	Е	5	5	80.3	67.5
6	Trans 2/2021	49	9.05	Е	5	5	90.8	65.3
7	Trans 2/2022	40	9.05	Е	5	5	85.8	60.0
8	Trans 2/iz 2021	40	7.05	Е	5	5	83.0	56.7
9	Barv 2020	40	10.05	SE	5	4	78.3	42.1
10	Barv 2021	40	8.05	Е	4	5	75.5	40.0
11	Rozon	40	10.05	Е	4	5	84.5	31.0
12	Grad Bot MD	50	7.05	Е	5	5	86.5	57.6
13	Cosmopolitan	50	10.05	SE	4	4	78.3	87.5
14	Tampa 2016	40	10.05	SE-P	3	3	71.8	72.5
15	Tampa 2017	50	7.05	SE-P	4	4	76.0	53.0
16	Tampa 2018	20	14.05	SE	4	4	71.5	60.0

Disease resistance is an important factor in breeding objectives to ensure higher quality fodder production and an increased crop longevity. The results of observations and measurements were processed statistically,

showing a small variation for height and heading date (cv smaller than 10%) a medium variance for vegetative and generative tillers (cv between 10-20%) and a high variance for resistance to rust (higher than 20%) (table 3).

Table	e 3
Descriptive statistic - The coefficient of variation for the studied parameters	

Parameters	Valid N	Mean		Confiden 95.00%	Mediu	Min	Max			Std. Error	CV %
Vegetative	- '		75.0070	75.0070							
tillers	16	4.3125	3.93728	4.68772	4	3	5	0.4958	0.7042	0.70415	16.3
Generative											
tillers	16	4.375	3.99198	4.75802	4.5	3	5	0.5167	0.7188	0.7188	16.4
Height											
(cm)	16	79.1188	75.92707	82.31043	78.3	68.3	90.8	35.876	5.9897	5.98968	7.6
Rust resist											
(%)	16	59.4375	52.04861	66.82639	66	31	87.5	192.28	13.866	13.8664	23.3
Heading											
date	16	69.75	68.89079	70.60921	70	67	73	2.6	1.6125	1.61245	2.3

The traits investigated were analysed through the correlation matrix to estimate the correlations between the morpho - physiological characters The vegetative tillers are distinct significant positive correlation (0,81) with generative

tillers and with plant height (0,77) and negative correlation with rust resistance (-0,06) and with heading date (-0,22). The generative tillers are distinct significant positive correlation (0,80) with plant height also (table 4).

Table 4

The correlation matrx							
Parameters	Vegetative	Generative	Height	Rust	Heading		
	tillers	tilleres	(cm)	reistance (%)	date		
Vegetative tillers	1,00	0.81***	0.77***	-0.06	-0.22		
Generative tillers		1,00	0.80***	-0.26	-0.26		
Height (cm)			1,00	-0.07	-0.3		
Rust resist (%)				1,00	-0.001		
Heading date					1,00		

Following the calculations made through the principal components analyses (PCA), three components was resulted, so the first 3 components bring a variance of 92.36 %. It is found that, accepting the expression of the initial causal space, respectively of

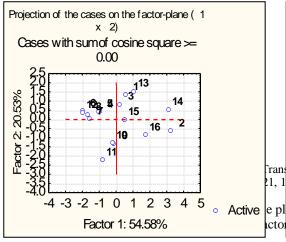
the variables under study, through a single main component, only 54.58% of the initial variance is explained. Extending the number of main components to tree, the explanation of 92.36% of the total variance is ensured (Table 5).

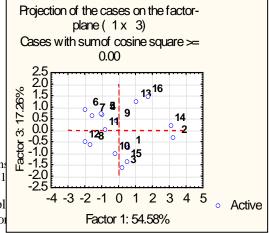
Table 5 Eigenvalues of correlation matrix, and related statistics

Component	Eigenvalue	% Total	Cumulative	Cumulative
		variance	Eigenvalue	%
1	2.7292	54.5832	2.7292	54.5832
2	1.0263	20.5269	3.7555	75.1101
3	0.8628	17.2569	4.6184	92.3670
4	0.2248	4.4957	4.8431	96.8628
5	0.1569	3.1372	5.0000	100.0000

Principal component 1 (PC1) which represented 54.58 % of the total variation, includes the variables with the highest negative correlation coefficients: vegetative tilers (r=-0.90), generative tilers (r=-0.93), and plant height (r=-0,.91). Principal component 2 (PC2) which represented 20.52 % of the total

variation includes the variable with positive correlation coefficients: rust resistance (r=0.20).Principal component (PC3) which 3 represented 17.25 % of the total variation include positive heading correlation coefficients: date (r=0.41) (tables 6).


Table 6. Factor-variable correlations, based on correlations


	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Vegetative tillers	-0.9018	0.0694	0.2347	-0.3021	0.1890
Generative tillers	-0.9335	-0.1321	0.0890	-0.0444	-0.3183
Height (cm)	-0.9118	0.0953	0.1242	0.3607	0.1188
Rust resist (%)	0.2085	0.9141	0.3394	-0.0043	-0.0755
Heading date	0.4121	-0.3993	0.8181	0.0385	-0.0063

The genotypes Tâmpa 2016 and Trans 2/2017 represented in figure 1 a) with points 14 and 2, have a big contribution to the PC 1, namely vegetative tilers, generative plant height. tilers, and The abundance of vegetative tilers with the generative combining tillers give high biological a potential for break the existing negative correlations between seed and forage production. The

Cosmopolitan (no.13) variety has positive contribution to PC represented here by the resistance, and Rozon (no.11) have a negative contribution. In the breeding process the most resistant genotypes, with the frequency of over 80% resistant plants will be chosen. In the PC 3 (figure 1 b)), represented by heading date, the variety Tampa 2018 (no 16) has a big contribution. For identify the

most valuable genotypes that could be the basis for the creation of new qualitatively and quantitatively superior synthetic combinations and the highlighting and selection of the parental forms of *Festuca pratensis* Huds., it's good respond to the principals breeding objectives: increasing the forage and seed production, disease resistance and adaptability.

CONCLUSIONS

The positive correlation between vegetative tillers. considered the most important trait for forage production and the generative tillers, the basic criteria for the phenotypic selection in the purpose of obtaining varieties with high seed production, allow us to select genotypes with both features be combined in the genotypes. The high coefficient of variability concerning rust resistance offers the possibility to

select resistant plants this to aggressive pathogen. The observations concerning the plant habit permit us to choose similar phenotypically genotypes to ensure the uniformity of a new genotype. observations The determinations made on individual plants allow a convergent selection of valuable genotypes regarding the breeding objectives for the creation of new and superior varieties.

REFERENCES

- 1. Balan M., (1999), Study concerning seed yield and the elements of fructification at *Dactylis glomerata* varieties, 4th International Herbage Seed Conference, Perugia, pp 292-295
- 2. Babic S., Sokolovic D., Radovic J., Andjelkovic S., Lugic Z., Vasic T., Petrovic M., Simic A., (2018), Analysis of variability of meadow fescue (*Festuca pratensis* Huds,) populations and cultivars,

- Proceedings of the IX International Agricultural Symposium Agrosym 2018, pp 419-424.
- 3. Babic S., Sokolovic D., Radovic J., Andjelkovic S., Lugic Z., Vasic T., Petrovic M., Zornic V., (2023), Variability of meadow fescue accessions and quality of their polycross progenies, Romanian Agricultural Research, nr. 40, pp. 169-176
- 4. Humpreys M.W., Zwierzkowsky, Z. (2020), Festulolium a century of research and breedingand its increased relevance in meeting the requirements for multifunctional grassland agriculture, Biologia plantarum, 64, pp 578-590
- 5. Mocanu V., Dragomir N., Blaj V. A., Ene T A., Tod M., A., Mocanu V., (2021), Pajiștile din România. Resurse, strategii de îmbunătățire și valorificare, pp 132-133.
- 6. Moga I., Schitea M., (2000), Cultura plantelor furajere pentru sămânță, Ed.Ceres, pp 199-207).
- 7. Thomas H., Dalton S, J., Evans C., Chorlton K. H., Thomas I. D., (1996), Evaluating drought resistance in germplasm of meadow fescue, Euphytica 92 pp 401-411
- 8. Varga P., Moisuc A., Savatti M., Schitea M., Olaru C., Dragomir N., Savatti M jr. (1998), Ameliorarea plantelor furajer și producerea semințelor, Ed. Lumina, pp 214.

THE SYNERGY BETWEEN PLANTS AND MICROORGANISM IN HEAVY METALS REMOVAL – A SHORT REVIEW

Bianca POP *, Roxana VIDICAN **, Vlad STOIAN *, Anca PLEŞA *, Alexandra GHEORGHITĂ *

* Faculty of Agriculture. Department of Microbiology. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manăştur street, 3-5, 400372, Romania ** Corresponding author e-mail roxana.vidican@usamvcluj.ro

Abstract

Soil degradation in the presence of heavy metals represents an environmental problem with negative effects on world biomes. A multitude of methods were developed to reduce these types of pollutants, and the most effective one is bioremediation, which implies the use of plants and microorganisms. Phytoextraction is considered a promising bioremediation technique, cost-effective and sustainable for environmental recovery. The effect of this approach can be increased by the inoculation of plant roots with beneficial microorganisms. This technique is based on the relationship between plants and soil microorganisms and increases the adaptation potential of plant species to metal-rich environments. For this purpose, various microbial groups have been shown to stimulate the production of growth-supporting hormones, activate stress response mechanisms and improve nutrient availability through fixation and solubilization processes.

Keywords: grassland, microbial communities, heavy metals, pollution, bioremediation

INTRODUCTION

Soil degradation is a global problem environmental with negative effects on food security. For this reason, improving soil health is an essential challenge for sustainable agriculture (GRAMMENOU et al., 2023). High concentrations of heavy metals (such as Pb, As, Hg and Cd), generated by their intensified use in industrial processes, pose a major threat to public health. In this context, bioremediation is emerging as a sustainable, affordable and environmentally friendly solution based on the use of microorganisms, green plants or enzymes to remove

heavy metals from contaminated environments (GAUR et al., 2014). There is a growing global need to use plants to restore the natural environment. Research indicates plants contribute to the restoration of ecosystems mainly through their metabolic processes, as well as by working with various micro-organisms. During remediation, the ability of plants to purify is conditioned by factors such light. stomatal aperture. temperature and microbial species diversity (WEI et al., 2021).

The rapid expansion of industry, coupled with human

activities such as the intensive use of chemicals in agriculture, the burning of fossil fuels and the inadequate management of sewage sludge, has led to the serious contamination of soils and water resources with heavy metals. These elements. resistant being biological degradation, persist in the environment and require remediation methods to prevent their spreading in the ecosystem and to allow their effective disposal. Bioremediation, which is based on the action of micro-organisms, is one such solution, which develop various mechanisms to reduce the effects of contamination. Heavy metal pollution is a major stress on human health, flora, fauna and other forms of life. In this context, a understanding of thorough the processes involved remediation alternatives is essential effective to ensure and

economically viable solutions (KAPAHI et al., 2019).

Among the many methods adopted to reduce heavy metal pollution, bioremediation considered a sustainable and costeffective technology. Bioremediation relies heavily on in addition to other bacteria. microorganisms and plants. The inherent and adaptive mechanisms developed by bacteria to defend themselves against metal toxicity include bioadsorption/biosorption, bioaccumulation, bioprecipitation, and bioleaching (SREEDEVI et al., 2022).

The aim of this manuscript is to analyze the research existing in the Web of Science on the topic of soil degradation in the presence of heavy metals, the mechanism that are associated with plants and microorganisms for their removal and their potential disturbance on grassland species and biomes.

TECHNIQUES AND PLANT-MICROORGANISM INTERACTION FOR HEAVY METALS REMOVAL

Bioremediation is a costeffective solution for removing pollutants from the environment (LATA et al., 2019). This strategy involves the use of living microorganisms and plants (through the process of phytoremediation) to extract heavy metals (figure 1).

Bioremediation and phytoremediation (figure 2) are among the most effective strategies used for environmental restoration

(CABRAL et al., 2015). In this arbuscular mvcorrhizal context. fungi (AMF) represent the most valuable type of mycorrhizae involved phytoremediation in They are commonly processes. found in polluted soils and research indicates that they enhance plant resistance to high levels of toxic elements in small amounts. Similar to other organisms, plants have multiple mechanisms through which

they can neutralize the harmful effects of heavy metals

(KUSHWAHA et al., 2015).

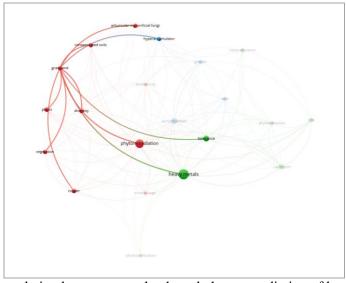


Fig. 1. The relation between grasslands and phytoremediation of heavy metals (developed with VOSviewer)

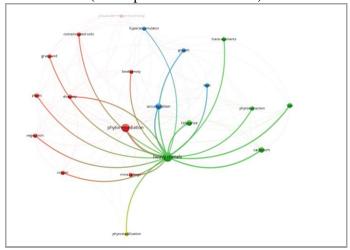


Fig. 2. The impact of heavy metals on plant species from grasslands (developed with VOS viewer)

These mechanisms include limiting metal absorption by associating with mycorrhizae, fixing them in the cell wall or through root excretion, removing metal ions from the plasma membrane, complexing them with phytochelatins and metallothioneins, and isolating them in vacuoles. Phytoremediation is a modern and promising technology based on the use of plants, together with microorganisms in the rhizosphere, to remove pollutants from contaminated soils.

Plants develop various strategies (figure 3) to cope with the toxicity caused by heavy metals (COBBETT et al., 2001). One of these mechanisms consists of neutralizing metals by binding them to certain peptide compounds known as phytochemicals.

Advances in molecular genetics have provided valuable information about the processes involved in the synthesis of these compounds. The use of plants to clean soils contaminated with heavy metals, a process called phytoextraction, has many advantages, but the efficiency of this method is not yet high enough to be economically viable.

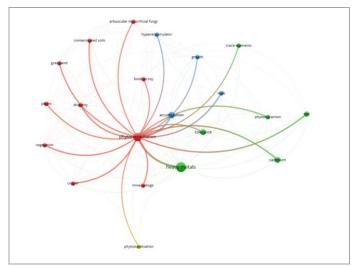


Fig. 3. Plant strategies for heavy metals removal (developed with VOSviewer)

A known way to increase the efficiency of phytoextraction is to inoculate the rhizosphere of plants with beneficial microorganisms (WOOD et al., 2016). Plants can remove over 95% of pollutants in soils. The selection of suitable species depends on the type of

contaminants in the soil. The mechanisms by which phytoremediation occurs include uptake, internal transport, stabilization and volatilization of pollutants by plants (ZHU et al., 2024).

THE IMPACT OF HEAVY METALS ON BIOMES AND THE REMOVAL AIM

Heavy metal pollution is a serious problem that can have longterm effects on human health and the environment (NNAJI et al., 2023). Therefore, it is essential to implement effective methods for removing and remediating these pollutants in order to protect human

health and ecosystems (figure 4, 5). Traditional methods of heavy metal removal. such chemical as treatments or physical methods, can be costly and have negative effects on the environment. In contrast, the use of plants and microorganisms in bioremediation of the metalcontaminated environments has proven to be an effective solution based on the accumulation and/or detoxification metals. of approach is economical, versatile, efficient, environmentally and friendly.

The use of plants, either directly or indirectly, to clean contaminated soil or water is called phytoremediation (ARTHUR et al., 2005). This technology has become a more affordable, non-invasive, and widely accepted method for removing pollutants from the

environment. The use of plants associated together with microorganisms to remove, isolate, inactivate, or decompose hazardous pollutants from the environment, a process generally known phytoremediation, is gaining increasing interest (VANGRONSVELD et al., 2009).

The effectiveness phytoremediation as a remediation technology depends on several factors, including the degree of soil contamination, the availability and accessibility pollutants of microorganisms in the rhizosphere absorption by roots (bioavailability), as well as the ability of the plant and associated microorganisms to intercept, absorb, and/or break down accumulate. contaminants. these

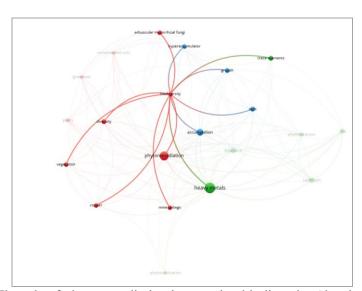


Fig. 4. The role of phytoremediation in restoring biodiversity (developed with VOS viewer)

Phytomanagement aims to use valuable non-food crops to

reduce environmental and health risks caused by pollutants and to

restore ecosystem services. Suitable plant species must be tolerant to contaminants, limit their transfer into the food chain, and produce biomass efficiently. commercial Due to Miscanthus ability to fix inorganic contaminants in the root and facilitate svstem the decomposition of persistent organic pollutants in the soil, these plants are ideal for phytostabilization and phytodegradation. Miscanthus giganteus, with its high

lignocellulose content, is promising crop for the bioeconomy, particularly for the biorefining and bioenergy industries. Growing this species on contaminated or marginal land offers a viable solution to avoid changing the use of agricultural land and helps resolve controversies related to competition between food and biofuels (NSANGANWIMANA al.. et 2019).

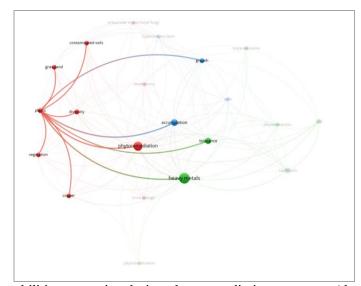


Fig. 5. Plant abilities to survive during phytoremediation processes (developed with VOSviewer)

THE IMPORTANCE AND IMPACT OF MICROBIAL RESOURCES IN BIOREMEDIATION OF POLLUTED GRASSLANDS

Various human activities. mining, such as intensive agricultural practices, and industrialization, have long-lasting negative effects on the environment (TIWARI et al., 2018). These processes contribute the to

accumulation of heavy metals in soil, water, and air. Promisingly, the use of microorganisms as an alternative solution to increase plant tolerance to heavy metals has begun to attract increasing interest. The relationship between plants and soil microorganisms plays an essential role in the adaptation of vegetation to metal-rich environments, thus opening up new perspectives for applying this interaction to increase plant resistance to metal contamination (figure 6).

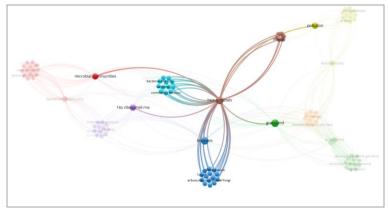


Fig. 6. The general impact of heavy metals on grassland plants and microorganism (developed with VOSviewer)

Abiotic stress factors, such as drought, salinity, heavy metals, temperature fluctuations, and ultraviolet radiation. negatively influence plant growth development, leading to decreased production (KHAN et al., 2021). These factors directly affect the rhizosphere, which has a significant impact on root system development implicitly, on the overall condition, health, and yield of the plant. In the rhizosphere, plants are in constant interaction with a multitude of microorganisms.

Over time, numerous cases of arsenic poisoning have been reported globally, and the highly toxic effects of this element on humans, plants, and animals are well known (WILLIAM et al.. 2023). Human activities that contribute soil and to water contamination with arsenic, together with its persistence and toxicity, make arsenic a pollutant of great interest and concern. In this context, bioremediation using microorganisms has emerged as one of the most effective methods due to its safety, reliability, and sustainability (figure 7).

These pollutants negatively affect the health of plants, animals, and humans. In addition. contribute to the destruction of microbial populations in aquatic and terrestrial environments, making intervention through remediation methods necessary. Bioremediation consists of using biological such as plants and organisms, microorganisms (figure 8). eliminate or diminish the impact of environment pollutants on the (AYILARA et al., 2023). For this

purpose, various groups of bacteria, fungi, and algae have been used to help clean up different types of pollutants.

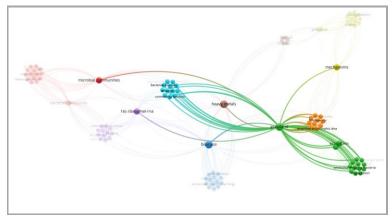


Fig. 7. The integrated concept of plant-microorganism survival and removal of heavy metals in grasslands (developed with VOSviewer)

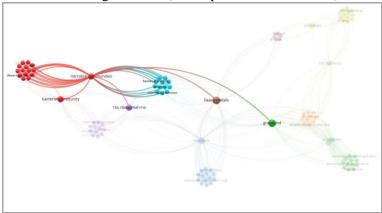


Fig. 8. Microbial abilities involved in heavy metals removal from grasslands (developed with VOSviewer)

High concentrations of heavy metals and non-essential metalloids (arsenic, cadmium, and lead) in soils and irrigation water pose a threat to the environment, food safety, and human and animal health (GONZALEZ HENAO et al., 2021). Microbial bioremediation has become a promising strategy for reducing these concentrations, thanks to the proven ability of microorganisms, especially bacteria,

to capture and transform these toxic substances.

Environmental pollution caused by hazardous waste, organic pollutants, and heavy metals has had a negative impact on the natural ecosystem, ultimately affecting human health (OJUEDERIE et al., 2017). Toxic metals can accumulate in agricultural soil and enter the food chain, posing a serious threat to food security. In this context,

bioremediation is proving to be an environmentally friendly and effective method of restoring environments contaminated with heavy metals, using the natural biological mechanisms of microorganisms and plants to eliminate hazardous pollutants.

THE SIGNIFICANCE OF FUNCTIONAL MICROBAIL COMMUNITIES IN RHIZODEGRADATION

The significant impact of microorganisms (figure 9) on crop stress growth. resistance ecological restoration has attracted increased interest due to the complex interaction between these micro-organisms and plants (IQBAL et al., 2023). Various

microbial groups, including bacteria, fungi, archaea and viruses, have been shown to stimulate the production of growth-supporting hormones, activate stress response mechanisms and improve nutrient availability through fixation and solubilization processes.

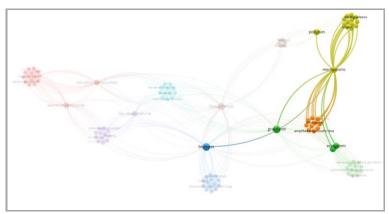


Fig. 9. Microbial mechanism in the removal of heavy metals from grasslands (developed with VOSviewer)

Rhizoremediation, a specific form of phytoremediation involving both plants and microorganisms in the rhizosphere, can occur naturally or be stimulated by the intentional introduction of certain organisms (figure 10). During this process, plant roots release exudates that promote and stimulate the development and activity of the

microbial community in the rhizosphere. As a result, pollutants are effectively degraded (SARAVANAN et al., 2020).

(SARAVANAN et al., 2020).

Plant-assisted
bioremediation, also known

phytoremediation, also known as phytoremediation, is a promising method for in situ treatment of contaminated soils (figure 11). To improve these processes, a thorough

complex understanding of the interactions in the rhizosphere is needed (WENZEL, 2009). Literature reviews indicate that the bioavailability of pollutants in the rhizosphere of crops used phytoremediation is essential for the development of effective and predictable technologies. The limitations related the bioavailability of pollutants can be creating overcome by microbial consortia able to mobilize

metals and metalloids by altering the rhizosphere pH (e.g. by cocultivation with Alnus species) and by releasing ligands, by increasing the bioavailability of organic pollutants through the secretion of biosurfactants. In addition to this limitation, another major obstacle is the lack of competitiveness ofinoculated microbial strains (especially field degradative ones) under conditions.

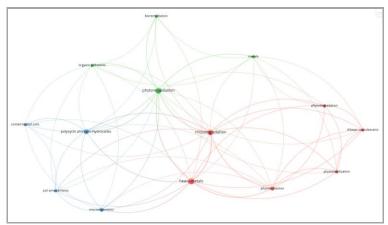


Fig. 10. Root-microorganism interaction for rhizodegradation of pollutants (developed with VOSviewer)

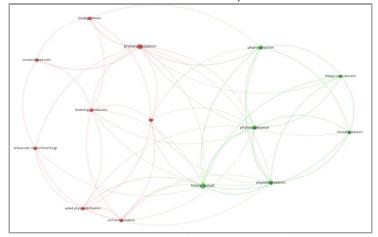


Fig. 11. The synergy between plants and microorganism in phytoremediation and phytostabilization (developed with VOSviewer)

Microorganisms have complex role that includes partial biodegradation of pollutants, stimulating plant growth and nutrient sustaining supply (CHOJNACKA et al., 2023). Plants produce root exudates that help micro-organisms to degrade organic pollutants and stimulate growth. Pollutants are taken up by plants through the root system, a that process can be further supported by endophytic microorganisms. The collaboration between these three components generates a synergistic effect that

improves the efficiency of rhizodegradation supported by functional materials, a more efficient method than the isolated micro-organisms, of phytoremediation functional or materials. The combination of physico-chemical (functional materials) microbiological and (bacteria and fungi, rhizosphere, symbiotic or non-symbiotic) supported methods, hyperaccumulator plants, is promising strategy for reducing chemical pollutants in soil.

CONCLUSIONS

The current context of soil pollution with heavy metals require more sustainable approaches based on both plants and microorganism mechanisms.

Both bioremediation and phytoremediation are among the most effective strategies used for environmental restoration, and the use of microorganism in plant rhizosphere increase the efficiency of phytoremediation.

The interaction between plants and soil microorganisms plays an essential role in the survival of vegetation to polluted environments.

Rhizoremediation represent a specific form of phytoremediation involving microorganisms that possess the ability of partial biodegradation, plant-growth promotion and nutrient supply increases.

The use of plant-microorganism interaction opens new perspectives for the development of more efficient bioremediation techniques.

REFERENCES

- 1. Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L., & Coats, J. R. (2005). Phytoremediation—an overview. *Critical Reviews in Plant Sciences*, 24(2), 109-122.
- Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Front Agron 5: 1183691.
- 3. Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. *World Journal of Microbiology and Biotechnology*, 31, 1655-1664.
- 4. Chojnacka, K., Moustakas, K., & Mikulewicz, M. (2023). The combined rhizoremediation by a triad: plant-microorganism-functional materials. *Environmental Science and Pollution Research*, 30(39), 90500-90521.
- 5. Cobbett, C. S. (2001). Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. *Iubmb Life*, *51*(*3*), 183-188.
- 6. Gaur, N., Flora, G., Yadav, M., & Tiwari, A. (2014). A review with recent advancements on bioremediation-based abolition of heavy metals. *Environmental Science: Processes & Impacts*, 16(2), 180-193.
- 7. Gonzalez Henao, S., & Ghneim-Herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. *Frontiers in Environmental Science*, 9, 604216.
- 8. Grammenou, A., Petropoulos, S. A., Thalassinos, G., Rinklebe, J., Shaheen, S. M., & Antoniadis, V. (2023). Biostimulants in the soil—plant interface: agro-environmental implications—a review. *Earth Systems and Environment*, 7(3), 583-600.
- 9. Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. *Journal of health and pollution*, *9*(24), 191203.
- 10. Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. *Cells*, *10*(6), 1551.
- 11. Kushwaha, A., Rani, R., Kumar, S., & Gautam, A. (2015). Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. *Environmental Reviews*, 24(1), 39-51.
- 12. Lata, S., Kaur, H. P., & Mishra, T. (2019). Cadmium bioremediation: a review. *Int. J. Pharm. Sci. Res*, *10*(9), 4120-4128.

- 13. Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for heavy metal removal: a review. *SN Applied Sciences*, 5(5), 125.
- 14. Nsanganwimana, F., Pourrut, B., Mench, M., & Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. *Journal of environmental management*, 143, 123-134.
- 15. Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. *International journal of environmental research and public health*, 14(12), 1504.
- 16. Saravanan, A., Jeevanantham, S., Narayanan, V. A., Kumar, P. S., Yaashikaa, P. R., & Muthu, C. M. (2020). Rhizoremediation—a promising tool for the removal of soil contaminants: a review. *Journal of Environmental Chemical Engineering*, 8(2), 103543.
- 17. Sreedevi, P. R., Suresh, K., & Jiang, G. (2022). Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. *Journal of Water Process Engineering*, 48, 102884.
- 18. Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. *Frontiers in plant science*, *9*, 452.
- 19. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., ... & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. *Environmental Science and Pollution Research*, 16, 765-794.
- 20. Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., ... & Sonne, C. (2021). A review on phytoremediation of contaminants in air, water and soil. *Journal of hazardous materials*, 403, 123658.
- 21. Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils.
- 22. William, V. U., & Magpantay, H. D. (2023). Arsenic and microorganisms: genes, molecular mechanisms, and recent advances in microbial arsenic bioremediation. *Microorganisms*, 12(1), 74.
- 23. Wood, J. L., Tang, C., & Franks, A. E. (2016). Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. *Soil Biology and Biochemistry*, *103*, 131-137.
- 24. Zhu, Y., Gu, H., Li, H., Lam, S. S., Verma, M., Ng, H. S., ... & Peng, W. (2024). Phytoremediation of contaminants in urban soils: a review. *Environmental Chemistry Letters*, 22(1), 355-371.

FORAGE PRODUCTIVITY OF SOME SMOOTH BROMEGRASS (Bromus inermis Levss.) CLONES

Elena-Manuela (BĂDRĂGAN) VACARCIUC*, Ana-Maria DUDĂU, Elena STAVARACHE, Mihai STAVARACHE

Research and Development Station for Meadows Vaslui, Romania *Corresponding author e-mail: vacarciucelenamanuela@yahoo.ro

Abstract

The aim of the research was to determine the feed production potential of some smooth brome clones (Bromus inermis Leyss.) in the silvostepa area. The research was conducted during the period 2022-2024, at the Research and Development Station for Meadows (RDSM), Vaslui ($46^{\circ}40' - 36^{\circ}10'$ north latitude and $27^{\circ}44' - 20^{\circ}40'$ east longitude). 25 Smooth brome sources were used as initial material in the research. The experiment was conducted as a completely randomized block design in three repetitions. In this research, the production of dry matter of this species in the years 17, 18, and 19 vegetation, respectively, under the conditions of pedoclimation of the area of experimentation. The results showed that differences of statistical significance were obtained between the variants taken in the study, in the three years taken in the study. The best-performing variants were the $V_{8\ BICL8}$ variants in the 17th year of vegetation and the $V_{11\ BICL11}$ in the 18th and 19th years. These high-yielding clones can be used as parents in polycross to develop synthetic varieties.

Keywords: grassland, pasture, meadow, green mass, perennial, production.

INTRODUCTION

Maintaining the productive potential of temporary grasslands at the highest level can be achieved only if they are used in their composition species with productive potential, valuable species, application of fertilizers and their rational use (DEAK et al., 2009; HANCOCK, 2011). The smooth brome is adapted to colder climates, resistant to drought and extreme temperatures (UNDERSANDER et al., 1996; KOSTOPOLULU and KARATASSIOU, 2016). Thanks to the highly developed root system, the unassisted obsiga has high resistance to extreme temperatures

and drought (TURK *et al.*, 2015). The technology of growing the seed batches of fodder species is different from the technology of fodder production, with a tendency to improve the morphological peculiarities of seed production and seed quality indices (ENE and MOCANU, 2016; SAMUIL *et al.*, 2012; VACARCIUC *et al.*, 2023).

Bromus inermis is an important species due to its high drought tolerance and ability to adapt to new environmental conditions (RAAWE, 2004).

Smooth brome is characterized by a unique

morphology of the aerial part. Vegetative shoots are predominant and similar to generative shoots; they are formed from a high percentage of leaves, which contributes to high feed production as well as high quality of the resulting feed (KOZŁOWSKI *et al.*,

1992; MACKIEWICZ- WALEC *et al.* 2024). Understanding how plants adapt to drought is crucial for predicting the impact of climate change on grasslands composition and diversity (KROEGER and OTFINOWSKI, 2024).

MATERIAL AND METHOD

The purpose and objectives of the research carried out at the Research and Development Station Vaslui Meadows were represented the bv forage productivity of smooth some bromegrass (Bromus inermis Leyss.) clones. The research was carried out during the period 20222024, within the Research and Development Station for Meadows (RDSM), Vaslui (46°40'-36°10' north latitude and 27°44'-20°40' east longitude). The experience was established in 2006, it consists of 25 variants (individual plants), in 4 repetitions, each variant having a length of 6 m and a width of 1 m.

100 200 180 160 **ව 60** 120 100 80 30 10 20 2021-2022 agricultural year 2022-2023 agricultural year -Average air temperatures (°C) -Monthly precipitation amount (mm)

(green - optimal period; orange - water deficit period)

Figure 1. 2021-2024 Agricultural period climadiagram

In the three years studied, only one cut was performed per year, the second cut being only one of cleaning. The time of harvesting the plants was when over 50% of

the plants had flowered. Each variant was harvested and weighed, representing the amount of green mass (G.M.) A sample of 200 g G.M., dried at 65°C for 8 hours,

then weighed. The climatic conditions of the experimentation period, namely 2022-2024. In the agricultural period 2022-2023, there were two dry years with recorded being half ofrainfall multiannual average. During the period from April to September, there was a precipitation deficit every month. The agricultural year

2023-2024 was marked by high rainfall. Although the rainfall was above the multiannual average, there were also periods of water and uneven distribution stress results (figure 1). The statistically interpreted by analyzing variance and calculating significant differences (LSD).

RESULTS AND DISCUSSIONS

Productivity data are shown in Tables 1 and 2.

The production yield obtained differences of statistical significance in year 17 of

vegetation, 2022 (table 1), values ranging from 3035 kg \bullet ha⁻¹ to variant V_{15 B2CL3} and 4897 kg \bullet ha⁻¹ to variant V_{8 B1CL8}, with 1477 kg \bullet ha⁻¹ more than the blank variant.

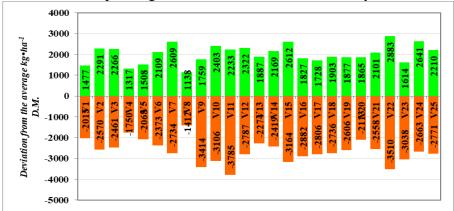
Plant production at first cut in the 17, 18, and 19 years of vegetation at *Bromus inermis* Leyss.

Variant	Production kg•ha ⁻¹ D.M.					
	Year 17 (2022)	Year 18 (2023)	Year 19 (2024)			
V _{1 B1CL1}	3443	6935 000	5997 000			
V ₂ B1CL2	3555	8417	6405			
V ₃ B1CL3	4219 ***	8946	6874			
V4 B1CL4	4557 ***	7624 °°°	6741			
V ₅ B1CL5	3982 ***	7558 000	6611			
$ m V_{6~B1CL6}$	3741 **	8222	6378			
$ m V_{7~B1CL7}$	4257 ***	9600 ***	7116 *			
V8 B1CL8	4897 ***	7447 °°°	6583			
V9 B1CL9	3823 ***	8893	8996 ***			
V ₁₀ B ₁ CL ₁₀	3595	9104 *	7404 ***			
V ₁₁ B1CL11	4285 ***	10303 ***	9622 ***			
V ₁₂ Olga control	3420 ^{C.}	8529 ^{C.}	6673 ^{C.}			
V ₁₃ B ₂ CL ₁	3392	7553 000	6052 °°			
V ₁₄ B ₂ CL ₂	3541	8130	6210 °			
V ₁₅ B ₂ CL ₃	3035 ⁰⁰⁰	8811	6750			
V _{16 B2CL4}	3700 *	8409	7637 ***			
V ₁₇ B ₂ CL ₅	3245	7778 00	7129 *			
V ₁₈ B ₂ CL ₆	3710 **	8349	7280 **			
V19 B2CL7	3272	7755 °°	6607			
V _{20 B2CL8}	3675 *	7653 000	6036 °°°			
V ₂₁ B ₂ CL ₉	3281	7940°	6298 °			
V22 Doina	3163 °	9556 ***	7300 **			

V23 Doin	a	3156°	7807 °°	7617 ***
V _{24 Doin}	a	3792 ***	9096 *	6475
V ₂₅ Doin	a	3929 ***	8910	7260 **
LSD	LSD 0.5%		461.6	364.8
	0.1%		615.5	486.5
	0.01%	371.5	801.5	633.5

Of the 25 origins in the 17th year of vegetation, 16 variants exceeded the V_{12} control variant, achieving higher yields by up to 43%. In the 18th year of vegetation, 2023 (table 1.). values were obtained between 6935 kg•ha⁻¹ D.M. at V_{1 B1CL1} and 10303 kg•ha⁻¹ D.M. at V_{11 B1CL11} variant, with 1774 kg•ha⁻¹ D.M. more than the control variant. Significant statistical significance was obtained in $V_{10 B1CL10}$, $V_{24 Doina}$, significant and very statistical

significance in $V_{7~B1CL7}$, $V_{11~B1CL11}$, and $V_{22~Doina}$ variants. In 2023, only 9 variants exceeded the V_{12} control variant, up to 20 % more. The year 18 being also the year in which the production of the d.m was superior, the control variant V_{12} obtained 8529 kg•ha⁻¹ while in the years 17 and 18 vegetation the obtained quantities were much lower, 3420 kg•ha⁻¹, respectively 6673 kg•ha⁻¹ D.M.


Table 2
Average production at first cut in the 17, 18, and 19 years of vegetation at *Bromus inermis* Leyss.

Variant	Production kg•ha ⁻¹ D.M.	Diffe	rence	Cignificance
variant	average 2022, 2023, 2024	%	kg/ha	Significance
V _{1 B1CL1}	5459	87.9	-749	000
V _{2 B1CL2}	6126	98.7	-81	
V _{3 B1CL3}	6680	107.6	473	*
V ₄ B1CL4	6307	101.6	100	
V _{5 B1CL5}	6050	97.5	-157	
V _{6 B1CL6}	6113	98.5	-94	
V _{7 B1CL7}	6991	112.6	784	***
V _{8 B1CL8}	6309	101.6	102	
V _{9 B1CL9}	7237	116.6	1030	***
V _{10 B1CL10}	6701	108.0	494	*
V _{11 B1CL11}	8070	130.0	1863	***
V ₁₂ Olga control	6207	100	C.	C.
V _{13 B2CL1}	5666	91.3	-541	0
V ₁₄ B ₂ CL ₂	5960	96.0	-247	
V ₁₅ B ₂ CL ₃	6199	99.9	-8	
V ₁₆ B ₂ CL ₄	6582	106.0	375	
V ₁₇ B ₂ CL ₅	6051	97.5	-156	
V ₁₈ B ₂ CL ₆	6446	103.9	239	
V ₁₉ B ₂ CL ₇	5878	94.7	-329	
V ₂₀ B ₂ CL8	5788	93.2	-419	0
V ₂₁ B ₂ CL ₉	5840	94.1	-367	

V _{22 Doina}	6673	107.5	466	*
V _{23 Doina}	6193	99.8	-14	
V _{24 Doina}	6454	104.0	247	
V _{25 Doina}	6700	107.9	493	*
	LSD	0.5%	411.8	
		0.1%	549.1	
		0.01%	715.0	

In the 19th year of vegetation, 2024 (table 1), the obtained values were between 5997 kg•ha⁻¹ D.M. at V_{1 B1CL1} and 9622 kg•ha⁻¹ D.M. at V_{11 B1CL11}. This year, too, values with positive statistical assurance were obtained for V_9 , V_{10} , V_{11} , V_{16} , and V_{23} variants, obtaining significant statistical significance. In this field of the 25 variants, 12 proved to be superior to control variant (V_{12}) , production varied depending on the

vegetation year and especially the climatic conditions of the year. In the three years of research (table 2.), the average production ranged from 5459 kg•ha⁻¹ to $V_{1 B1CL1}$ and 8070 $kg \cdot ha^{-1}$ to V_{11} B₁CL₁₁. The results obtained in the three years of production (table 2), show that this species achieves an important production of s.u. and in the 17-19 years of vegetation, these varied depending the on climatic conditions of the year.

Figure 2. D.M. Production deviation from the average (kg•ha-1 D.M.)

Compared to the average over the three years of production (17, 18, and 19 vegetation), the positive and negative deviations (figure 2.) were recorded at the V_8 , V_4 , V_1 , and V_{20} variants. The positive and negative deviations with the highest amplitude were recorded in the V_{22} , V_{11} , and V_{24}

variants. The most important variants being V_8 and V_1 , they are stable according to the climatic conditions of the last three years of vegetation, the obtained production did not have an increase or decrease compared to the V_{22} variant, where the oscillations were very much more in these years of production.

Assessing origins requires the determination of quantitative traits, as hereditary traits are a source of genetic diversity and can be easily modified under environmental

conditions. The creation of new valuable varieties is possible due to the large range of variability within the genetic resources of *Bromus inermis* Leyss.

CONCLUSIONS

In this research, the dry production obtained matter. differences with statistical assurance. In 2022. vear vegetation productions were 3035 kg•ha⁻¹ D.M. and 4897 kg•ha⁻¹ D.M., in 18 year vegetation, the obtained productions ranged between 6935 kg•ha⁻¹ and 10303 kg•ha⁻¹, and in 19 year vegetation, the production was between 5997 kg•ha-1 D.M. and 9622

kg•ha⁻¹. The highest yields in the three years studied were obtained at the V₈ variant, in the 17th year of vegetation, and at V_{11} , in the 18th and 19th years of vegetation. This study shows that this species, Bromus inermis. is a resistant species with high perennial, drought-tolerant, obtaining productions and in the 17-19 years of vegetation.

REFERENCES

- 1. Deak A., Hall M.H., Sanderson M.A., (2009) Grazing schedule effect on forage production and nutritive value of diverse forage mixtures. Agron. J., 101:408-414.
- 2. Hancock D.W. (2011) Using relative forage quality to categorize hay. The University of Georgia and Ft. Valley State University.
- 3. Kostopolulu P., Karatassiou M., (2016) Photosynthetic response of *Bromus inermis* in grassland of different altitudes. Turkish Journal of Agriculture and Forestry.40:642-653.
- 4. Kozłowski S., Golińska, Aktualne B. (1992) Problemy Produkcji Nasiennej Stokłosy Bezostnej (*Bromus inermis* Leyss.) w Wielkopolsce. Biul. IHAR Poznań, 184:47–57.
- 5. Kroeger N.E, Otfinowski R. (2024) Adaptive root morphology as a drought response in *Bromus inermis*. Journal Article. Plant and Soil. DOI.10.1007/s11104-024-06926-x.
- 6. Raawe H. (2004) About Grass and Legume Species Suitability for Recultivation of Semi-Coke Dumps. Agronomy, 219:154–156.
- 7. Turk M., Albayrak S., Bozkurt Y. (2015) The change in the forage quality of smooth bromegrass (*Bromus inermis* L.) in grazing and non-grazing pastures. Research for rural development. 1.
- 8. Undersander D., Casler M., Cosgrove D. (1996) Identifying pasture grasses. Cooperative Extension Publications, A3637, 58p.

THE ADAPTABILITY OF THE GALLOWAY BREED TO ROMANIAN PASTURES: A SYSTEMATIC ANALYSIS OF ZOOTECHNICAL POTENTIAL – A REVIEW

RANTA Mirela*

*Department of Plant Crops. Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur street, 3-5, 400372, Romania.

*Corresponding author: mirela.ranta@usamvcluj.ro

Abstract

In the current context of European agriculture, marked by economic pressures, increasingly stringent sustainability requirements, and the need for efficient use of agroecological resources, it is essential to select cattle breeds adapted to diverse soil and climate conditions for the sustainable development of the livestock sector. This paper analyzes the potential benefits of using the Galloway breed in extensive cattle farming systems, particularly in Romania's hilly and mountainous regions, where significant areas of natural and semi-natural pastures remain underutilized. The Galloway breed originates from southwestern Scotland and is characterized by hardiness, remarkable adaptability to harsh climatic conditions, efficiency in utilizing low-quality pastures, and docile behavior. These characteristics facilitate extensive management. Their double coat provides thermal insulation, enabling the animals to overwinter outdoors and reducing the need for technological investments. Furthermore, the breed's productive performance reflects favorable economic potential under low-input conditions. International case studies from Scotland, Canada, and Luxembourg demonstrate the use of Galloways in producing high-quality meat and in ecological conservation and restoration projects for degraded habitats through controlled grazing and invasive vegetation management. In Romania, experimental results from the Cojocna Educational Farm (USAMV Clui-Napoca) confirm the breed's superior performance under extensive grazing conditions compared to other rustic breeds in similar systems. In conclusion, integrating the Galloway breed into extensive farms in Romania can increase the resilience of agroecosystems, sustainably utilize marginal land, and economically diversify farms in areas with low livestock-pastoral potential.

Keywords: Galloway breed, permanent grasslands, ecological adaptability, low technological requirements, extensive grazing

INTRODUCTION

In the current context of European agriculture and the growing need for sustainable and robust farming systems that are adapted to local conditions, selecting cattle breeds that can efficiently use pastures is essential. Romania has significant potential in terms of natural and semi-natural pastures, especially in hilly and mountainous regions. These resources can be used

efficiently through extensive livestock farming; however, this requires rustic breeds that are well-adapted and have low technological requirements. The permanent grasslands in our country cover approximately 4.9 million hectares. Of this area, 68% is used as grassland for pastures, while the remaining 32% is used for the production of hay. Approximately 79% of these

(about 3.8 grasslands million hectares) are located in hilly and mountainous areas, which have significant livestock potential but are often not properly exploited (Rotar, Vidican Roxana. Samuil, C. and Vîntu, V., 2012; Mocanu, V. et al. 2021; Cojocariu Luminita, 2022). At the same time, the cattle sector in Romania is experiencing a downward trend. According to data from the National Institute of Statistics (INS), there were 1,814,700 head of cattle in 2023, compared to 1,833,700 in the previous year. This reflects a modest but steady decline in interest in this species (https://insse.ro). In this context, growth strategies must be rethought to include breeds that are better adapted to current conditions and more efficient in extensive systems. In relation to this topic, the Galloway breed, which originates from the harsh regions of Scotland, is a subject that is increasingly being addressed specialized in the

literature because it is considered a model of adaptability in extensive systems. This hornless breed has a compact body and a double coat that protects it from cold and moisture (Pruitt, 2004). Its ability to utilize poor-quality pastures while maintaining a constant level of productive performance makes the Galloway breed a viable alternative restoring the hilly mountainous regions of Romania conditions of increasing economic and ecological pressure (https://www.gallowaybeef.co.uk).

Against this background, the aim of this paper is to review the literature on the use of the Galloway breed in extensive cattle farming systems. The focus is on the sustainable use of pastures in Romania, and the main aspects related to the productive performance, ecological impact, and economic efficiency of this breed are highlighted.

REGARDING THE GALLOWAY BREED

Origin and Selection

The Galloway breed originated in the Galloway region of southwestern Scotland and was developed before the 17th century. These cattle are polled (hornless) and adapted to harsh conditions, such as hilly terrain and a wet, cold climate. They have a dense coat with a thick outer layer and an insulating inner layer, which allows them to winter outdoors without special shelter. The evolution of native Scottish Celtic breeds, of which the Galloway is one

of the oldest, was shaped by natural selection until the 19th century. when they began to mix with other breeds. Initially, color variations (black. reddish, brindled, and sometimes white spots) were common. However, selection favored the polled line with a black coat until the 19th century when other color varieties (dun and red) were also recognized in the registry. Selection and Development

In 1862, a "Polled Herd Book" was published, including the

106

Table 1

107

Galloway breed alongside the Angus breed and others. The "Galloway Cattle Society of Great Britain and Ireland" was then established between 1877 and 1878. The society began to strictly record the breed's genealogy and standards (https://www.thecattlesite.com).

Initial registrations focused on black specimens, but over time, dun and red varieties were also permitted. In 1878, the Galloway breed started its own separate herd book.

The process of selection focused particularly on individuals displaying superior traits characteristic of the Galloway breed, such as:

1. rusticity and adaptability, including a dense coat, tolerance to harsh climates, and the ability to graze on marginal land;

- 2. natural selection for meat production, including fine marbling and a well-balanced carcass obtained directly from pasture;
- 3. maternal qualities and longevity: cows have easy calvings and vigorous calves, and maintain reproductive performance until 15 17 years of age.
- 4. polled and docile: the breed is naturally hornless, and the temperament is normally calm (https://www.gallowaybeef.co.uk).

The society and herd book, established in 1877–1878, have played a fundamental role in maintaining the breed's purity, promoting standards, and supporting economic growth in extensive farming systems.

The main characteristics of the Galloway breed

Category	Characteristics		
Origin	Southwestern Scotland -		
Origin	Galloway Region		
Breed type	Meat (cattle specialized for meat production)		
Size	Medium		
Adult weight	Cows: 500–600 kg; Bulls: 800–1000 kg		
Conformation	Compact, well-muscled, deep chest		
Presence of horns	Polled (naturally hornless)		
Coat colon	Black (dominant), red, dun; Belted Galloway		
Coat color	has a white belt across the trunk		
Coat atmostrate	Double: thick outer coat and dense (thermo-		
Coat structure	insulating)		
Maternal antituda	Strong maternal instinct, easy calving, high		
Maternal aptitude	reproductive longevity		
Average daily gain	650–700 g/day (in extensive systems)		
Slaughter yield	58–60 %, with fine marbling of the meat		
A domestilite.	Excellent for grazing in harsh climatic condi-		
Adaptability	tions and on low-quality pastures		
Pagemman dad gygtem	Extensive, semi-extensive, organic, con-		
Recommended system	servative (rewilding)		
Temperament	Calm		

Galloway Breed for Sustainable Grazing Systems

The Galloway breed is used successfully in extensive grazing systems on multiple continents, including in cold, wet areas and in temperate climates. This is due to the breed's hardiness, excellent grazing ability, and superior meat quality. Its consistent performance under various climatic and geographical conditions makes it a viable option for integrating into grazing systems in Romania, particularly in hilly and mountainous regions.

Belted Galloway cattle in ecological conservation in Scotland
— Case Study

The native Belted Galloway increasingly breed is being integrated into ecological restoration projects in Scotland due to its adaptability to extensive grazing and its ability to maintain diverse vegetation mosaics. One significant example is the landscape restoration project at Threave Estate in the Dumfries and Galloway region. which is coordinated by the National Trust for Scotland. In 2021, 14 Belted Galloway cattle introduced to promote the natural regeneration of vegetation develop more open and diverse seminatural ecosystems (https:// .nts.org.uk). Implementing www GPS-assisted grazing (Nofence) enables precise management grazing pressure, preventing overgrazing in certain areas and encouraging the return of native species (https://www.nofence.

have no/en). These practices positively affected both spontaneous flora, including tall grasses, and particularly birds and pollinators (https://www.nts.org.uk). A report by NatureScot and the Scottish Land Commission confirms that grazing with Belted Galloway cattle has led to the "opening up of floodplain" and supported "genuine regeneration" natural (https://www.thecattlesite.com).

This Scottish model shows that selecting a local, hardy, and adaptable breed, such as the Belted Galloway, and integrating it into an ecologically managed grazing system can be a valuable tool in ecological restoration strategies and the redevelopment of degraded habitats

The Galloway Breed in Canada: performance, grazing, and conservation

The Galloway breed, including the Belted and White Galloway increasingly varieties. plays an important role in Canadian extensive animal husbandry. Farms across the provinces are integrating this breed. Their adaptability to cold climates, feed efficiency, and selective grazing behavior make them suitable for sustainable commercial farms and ecological conservation projects on marginal lands. The Galloway breed was introduced to Canada in 1853, making it one of the oldest British breeds established on the North American continent (Shrestha, J.N. and Hansen, C. 1998). Renowned for its double coat with a thick outer

layer and insulating undercoat, the Galloway breed is ideal for the cold Canadian climate, eliminating the need for expensive winter shelter (Shrestha, J.N and Hansen, C. 1998).

According to tests carried out at the University of Guelph (https://lbcentre.com.au), Galloway meat is low in saturated fat and rich in omega-3 fatty acids. This meat is rated as being comparable to fish or poultry in terms of its health benefits.

Galloway grazing — extensive management in Canada

Canadian farms that use Galloway cattle typically employ an extensive rotational grazing system. In this system. animals are periodically moved between paddocks to avoid overgrazing and encourage vegetation regeneration. Due to their diverse and selective grazing behavior, Galloways can consume a wide range of plants, including tough grasses and perennial species, that more specialized breeds cannot (Cirebea, Mirela. 2020). These characteristics make Galloway cattle well-suited for restoring degraded pastures controlling invasive vegetation in pasture. In regions of Alberta and British Columbia with marginal lands, Galloway farms maintain the ecological structure of the landscape through targeted grazing, positively impacting local biodiversity (https://www.galloway.ca).

Galloway in Europe

The Belted Galloway breed is used in many conservation grazing projects throughout Europe because it can adapt to harsh environments and graze indiscriminately.

Restoration of floodplains — Syr Valley, Luxembourg with Galloway

In the Syr Valley Reserve, Belted Galloways have been used to restore wetlands to their natural state. A study conducted from 2006 2009 shows that the cattle contributed to the habitat's structural development, enriched spontaneous flora, and balanced the vegetation through "habitat development and habitat use" (Schaich et al., 2010).

Galloway in Romania

Galloway breed proven well-adapted to Romanian conditions and is suitable for extensive organic farms in Transylvania. It offers economic, zootechnical. and ecological advantages therefore and is recommended for utilizing marginal land and practicing sustainable farming. A study conducted at the Cojocna Educational (USAMV Clui) from 2023 to 2024 compared the Galloway breed to the Highland breed. The study showed that Galloway calves had an average daily gain (ADG) of 676.9 g/day, which was higher than the ADG of Highland calves 581.1 g/day, (Ranta Mirela and Mălinaș AnaMaria, 2024; Ranta et al., 2024). This result reflects the breed's excellent adaptability to extensive grazing with low-to-medium-quality feed and to the climate.

Fig. 1 Galloway on the grassland in Romania (Source: original)

Fig. 2 Galloway grazing model in Veseud, Sibiu County (Source: original)

CONCLUSION

The Galloway breed is a viable livestock resource for efficiently exploiting permanent pastures in Romania's mountainous and hilly regions. its rusticity, Due to adaptability to adverse environments, and minimal technological requirements, the

breed is well-suited for extensive farming systems, particularly in regions with limited forage availability. Using the Galloway breed in these systems is justified by its ability to graze non-selectively, including consuming poorly palatable or invasive plant species.

Thus, the animals help maintain the compositional balance vegetation. Applying an optimal livestock density per hectare ensures uniform use of the land, preventing overgrazing and underutilization of certain areas. This breed's potential is especially valuable in mountain areas with abandoned or difficult-toaccess pastures. Other specialized breeds cannot physiologically or behaviorally adapt to environmental conditions or sustain viable production under extensive farming. Through constant grazing, Galloway cattle maintain, clean, and keep these lands in a functional state. This reduces the risk of vegetation invasion supports and biodiversity specific to mountain ecosystems. At the same time, their ability to adapt to low temperatures due to their double insulating coat allows them to be raised outdoors during the cold season without specialized shelters. significantly reduces technological costs and supports the viability of farms with limited resources. The

breed's productive performance under extensive grazing conditions—evidenced by higher average daily gains than other rustic breeds—confirms its compatibility with Romanian agroecosystems.

RECOMMENDATION

There is potential to increase the use of Galloway cattle in hilly and mountainous regions of the country, particularly for the efficient use and of natural restoration pastures. Integrating this breed maintenance plans for difficult-toaccess or low-forage-value pastoral land contributes to agroecological balance. prevents habitat degradation, and maintains the characteristic floristic structure. As part of an integrated approach to biodiversity and ecosystem services mountain areas, it recommended that Galloway be included in agri-environmental measures, strategies to support lowinput farms, and functional pasture conservation initiatives.

REFERENCES

- 1. Cirebea, M. (2020). Study on the growth of the Galloway breed in the doclimatic conditions of the Transylvanian area. Dissertation paper, USAMV Cluj-Napoca.
- 2. Cojocariu, L. (2022). Cultura pajiștilor și a plantelor furajere, Note de curs, partea I. Timișoara: Universitatea de Științe Agricole și Medicină Veterinară a Banatului "Regele Mihai I al României" din Timișoara.
- 3. Mocanu, V., Dragomir, N., Blaj, V. A., Ene, T. A., Tod, M. A., & Mocanu, V. (2021). Pajiștile României. Resurse, strategii de îmbunătățire și valorificare. Brașov: Institutul de Cercetare-Dezvoltare pentru Pajiști.
- 4. Pruitt, P. (2004). A Chronological History of the Galloway in America. First Edition. Bozeman, Montana: Artcraft Printers, Inc. ISBN 0-9753866-0-3.

- 5. Ranta, M., & Mălinaș, A. (2024). Contributions to More Sustainable and Climate-Resilient Cattle Production: Study of Performance of Galloway and Highland Breeds in Transylvania, Romania. Animals, 14(24), 3686. https://doi.org/10.3390/ani14243686.
- 6. Ranta, M., Păcurar, F., & Ghețe, I. (2024). The adaptation of the Galloway breed in the climatic conditions of the Cojocna Farm. Revista de Zootehnie și Medicină Veterinară, RJGFC, nr. 29, art. 9.
- 7. Rotar, I., & Vidican, R. (2003). Cultura pajiștilor. Cluj-Napoca: Editura Poliam. ISBN 973-99930-0-1.
- 8. Samuil, C., & Vîntu, V. (2012). Environmental impact and yield of permanent grasslands: an example of Romania. In Organic Farming and Food Production. InTech. https://doi.org/10.5772/52006.
- 9. Schaich, H., Szabó, I., & Kaphegyi, T. A. M. (2010). Grazing with Galloway cattle for floodplain restoration in the Syr Valley (Luxembourg). Journal for Nature Conservation, 18(4), 268–277. https://doi.org/10.1016/j.jnc.2009.12.001
- 10. Shrestha, J. N. B., & Hansen, C. (Eds.). (1997). Canada's Animal Genetic Resources: Cattle Breeds in Canada. Ottawa: Agriculture and Agri-Food Canada, Technical Bulletin 1998-2E.
- 11. *** Harstad, Harald. 2021. Cattle shepherded by GPS in flagship biodiversity scheme. Nofence UK Blog, 17 septembrie 2021.
- 12. https://www.nofence.no/en/news/cattle-shepherded-by-gps-in-flagship-biodiversity-scheme. Accessed on June 12, 2025.
- 13. *** Olds College (Alberta). 2008. Research confirming Galloways' great maternal & carcass attributes: feed conversion efficiency report. https://lbcentre.com.au/documents/Ga% 20research% 20% 20confirming% 20galloway% 20revised% 202% 20june% 2008.pdf. Accessed on June 11, 2025.
- 14. *** Canadian Galloway Association. n.d. About the breed and grazing systems in Canada.
- 15. https://www.galloway.ca. Accessed on June 11, 2025.
- 16. *** Galloway Cattle Society. (2024).
- 17. https://www.gallowaybeef.co.uk. Accessed on June 12, 2025.
- 18. *** INSSE Institutul Național de Statistică. (2024). Bovine în exploatații agricole 2022–2023.
- 19. https://insse.ro. Accessed on June 12, 2025.
- 20. *** National Trust for Scotland. 2023a. Threave Landscape Restoration Project inspires change. National Trust for Scotland, Dumfries & Galloway.
- 21. https://www.nts.org.uk/stories/threave-landscape-restoration-project-inspires-change. Accessed on June 12, 2025.
- 22. *** National Trust for Scotland. 2021. Threave biodiversity project gets boost from HSBC UK. National Trust for Scotland, 22 septembrie

- 2021.https://www.nts.org.uk/stories/threave-biodiversity-project-gets-boost-from-hsbc-uk-1. Accessed on June 12, 2025.
- 23. *** NatureScot & Scottish Land Commission. 2022. Case studies in large-scale nature restoration and rewilding. Edinburgh: NatureScot. https://www.landcommission.gov.scot/downloads/62c5ec59e9454_Large-Scale-Nature-Restoration-Case-Studies.pdf. Accessed on June 10, 2025.
- 24.*** https://www.thecattlesite.com/breeds/beef/57/galloway. Accessed on June 10, 2025.
- 25.*** https://www.gallowaybeef.co.uk/history-heritage. Accessed on June 10, 2025.

HIGHLAND CATTLE – POTENTIAL FOR INTEGRATION AND ADAPTATION TO THE EXTENSIVE SYSTEM AT COJOCNA FARM

RANTA Mirela, PĂCURAR Florin, GHETE Ioana*.

*Department of Plant Crops. Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur street, 3-5, 400372, Romania.

*Corresponding author: ioana.vaida@usamvcluj.ro

Abstract

Considering that many pastures in Romania are not exploited to their full potential, the possibility of capitalizing on them by raising Highland cattle, which are capable of efficiently converting even low-quality grass into high-quality meat, was analyzed. The study, which focused on evaluating existing pastures and the adaptive behavior of the Highland breed in an extensive system, was carried out on the Cojocna farm, which belongs to USAMV Cluj. Pasture research covered 20 hectares of plot 11, which is part of the Natura 2000 site ROSCI0238 Suatu-Cojocna-Crairât. The goal was to evaluate the Highland breed's adaptability to the Cojocna Farm's specific soil and climate conditions by achieving the following objectives: 1) analyzing the effect of grazing with Highland cows on the ecological and agronomic value of Natura 2000 habitats; 2) determining the correlation between average daily gain (ADG) and the floristic composition of the pasture; 2) developing specific measures to improve pasture types; and formulating recommendations on technology for farming Highland beef cows in an extensive system. This research activity was conducted in 2023. The methodology included weighing calves according to the official performance control system (COP) to determine ADG, as well as geobotanical methods using the Braun-Blanquet scale to identify and characterize grassland types in two descriptive plots (PD1 and PD2).

The results show that the gains achieved fall within the performance parameter s specific to the Highland breed, despite the pastures being dominated by plant types such as Stipa capillata, - Carex humilis, and Festuca rupicola, which are only moderately tolerant of grazing. In this context, we recommend implementing a rational grazing system, clearing woody vegetation, and controlling toxic plants to ensure the pastures are exploited sustainably and efficiently.

Keywords: Highland cattle, grassland, adaptability, average daily gain

INTRODUCTION

Highland cattle are considered one of the oldest known pure breeds. They originated in the Highlands of Scotland. Over many centuries, it evolved through natural selection in harsh climatic conditions and marginal land. This process favored traits such as hardiness, longevity, fertility, pronounced

maternal behavior, and adaptability to grazing in harsh conditions (Nota et al., 2024).

The breed was officially recognized when the Highland Cattle Society was established in 1884 and the first Herd Book was published in 1885. Since the 19th century, the breed has spread to various areas

with severe climates, including Canada, the United States, and Germany (Svensk et al., 2023).

One of the most distinctive features of this breed is its double coat, which consists of a long, thick, oily outer layer that repels water and a thin, dense undercoat that provides thermal insulation. This adaptation enables the animals to remain outdoors year-round, even in low temperatures or high humidity (Nota et al., 2024; Sambraus, 2016).

Highland cattle have compact bodys with low centers of gravity and broad hooves adapted to muddy, rocky, or steep terrain. Their moderate weight and large hoof surface area result in low pressure exerted on the soil, reducing the impact on the vegetation layer and minimizing soil compaction (Pauler et al., 2022; Ranta & Mălinas, 2024).

Highland beef is recognized for its low fat and cholesterol content, as well as its high ratio of omega-3 fatty acids and conjugated linoleic acid (CLA). Compared to intensively raised breeds, Highland beef has a higher protein, iron, and zinc content and a lipid profile that is favorable to human health (https://hyndmanbeef.com). This of meat comes almost exclusively from extensive grazing, without the use of concentrates.

Highland cattle have adaptable feeding behaviors and a preference for mixed diets, including grass, herbaceous plants, and woody species or shrubs. Studies in forested areas of the Swiss and Italian Alps have shown that Highlanders consume 15-46% woody plants, such as *Alnus viridis*, *Rubus spp.*, and *Fraxinus*. This helps control invasive species and maintain ecosystem balance (Svensk et al., 2023; Pauler et al., 2022).

In addition to their effect on clearing and compaction, Highlands contribute biodiversity to enhancement through seed transport (endo- and epizoochory) and by diversity maintaining plant grasslands (Nota et al., 2024). In the current context marked by the transition to sustainable agriculture and biodiversity conservation, the Highlands are regaining the attention farmers. ecologists, and researchers. Their ability to graze a wide variety of vegetation, including woody species, and to support the conservation of semi-natural habitats makes them a valuable asset in ecological pasture management similar to Galloway cattle (Ranta et al., 2024). This study aims to assess the adaptability of the Highland cattle breed within an extensive system, in the context of the specific soil and climate conditions of the Cojocna Farm. In this context, the following main objectives were followed: a) to analyze the impact of grazing with Highland cattle on the ecological and agronomic value of habitats included in the Natura 2000 site: b) to establish the correlation between average daily gain (ADG) and the floristic composition of the pastures used at the Cojocna Farm; c) formulation of specific measures to

improve pasture types; d) development of a set of technological recommendations for

the efficient exploitation of Highland cattle in extensive systems.

MATERIAL AND METHOD

The research was carried out at the Cojocna Farm, an educational experimental administered by the University of Agricultural Sciences and Veterinary Medicine in Cluj-Napoca. The farm is located in Cluj County, at an altitude of 369 m, in an area with a temperate-continental moderate climate, characterized by an average annual temperature of approximately $^{\circ}C$ and average annual precipitation of approximately 860 mm.

The total grassland area is approximately 267 hectares. Some of these lands are part of the Natura 2000 site ROSCI0238 Suatu—Cojocna—Crairat, a protected area of community interest, recognized for its biodiversity specific to grassland ecosystems of high ecological value.

Data analysis

An area of 20 ha of grassland located within the Natura 2000 site was used for extensive grazing by a herd of 10 Highland beef cattle. The resulting stocking rate was estimated at 0.4–0.5 livestock units (LU)/ha. The farming system was unparceled, free-range, adapted to the ethology of the breed, which shows a marked preference for large, open spaces, an essential aspect in the context of biodiversity conservation and the

maintenance of semi-natural habitats.

The growth performance of calves was monitored the accordance with the Official Production Control (OPC) methodology, as part of an organized breeding program. The average daily (ADG) parameter growth determined based on standardized calculations, using specific formulas for pre-established weighing intervals.

The floristic composition of grassland vegetation the analyzed using the geobotanical method, applying the Braun-Blanquet scale, according to the methodology described by Păcurar and Rotar (2014). The grassland typology was classified based on the work of Tucra and colleagues (1987). The agronomic evaluation of the plots was carried out accordance with the standard procedures used in pedo-agronomic studies on grassland ecosystems.

In 2022, a genetic herd consisting of 10 heifers and one bull of the Highland breed was imported from Germany with the aim of forming the nucleus of an extensive cattle breeding system on the Cojocna Farm. The imported animals and their offspring were registered in the National Herd Book and integrated into the official

breeding program, ensuring traceability and control of the genetic performance of the population. The entire imported herd, as well as its offspring, were registered in the official genealogical register and

RESULTS AND DISCUSSIONS

The calves have a low birth weight, which contributes to easy calving without the need for human intervention. The age at weighing varied depending on the individual, and the average daily gain (ADG) recorded was within the range specific to the breed, with values between 491 and 671 g/day. Cows are not milked in the rearing system applied, with all milk being used for natural suckling of calves, which promotes vigorous development and efficient weight gain.

The age at weighing varied considerably, so that the live weight

integrated into the national breeding program, thus ensuring genealogical records and monitoring of reproductive and productive performance.

and average daily gain (ADG) of the animals fell within the normal limits for the breed analyzed, with values ranging from 312 to 729 g/day. The cows are not milked, and the calves consume all their mother's milk. which contributes significantly to daily weight gain (Fig. 1, 2, and Table 1). Statistically significant differences between the weight gains of males and females were identified only at point P1, while at points P2, P3, and TDG (total daily gain), no significant differences between the sexes were recorded in terms of body weight (Table 1).

Fig. 1 Highland cattle (Source: original)

Fig. 2 Highland cattle with calves (Source: original)

Table 1 Official performance control of the Highland calves

Gender	Birth date	Birth weight (kg) P1	Age in days (210±45)	Weight (kg)	ADG-gr. (Average Daily Gain) P2	Age in days (365±45)	Weight (kg)	ADG-gr. (Average Daily Gain) P3	TDG-gr. (Total Daily Gain)
М	2022-12-12	26	283	117	322	343	241	627	474
M	2022-10-10	27	346	168	408	406	256	564	486
M	2022-12-20	28	275	189	586	335	272	729	657
M	2022-12-23	27	272	159	485	332	260	702	594
F	2022-12-10	22	285	115	326	345	240	632	479
F	2022-11-24	24	301	118	312	361	241	601	457
F	2022-12-29	23	266	120	365	326	245	681	523
F	2023-01-17	25	247	135	446	307	235	684	565
M F		P1 27±0.41b 23.5±0.51a		M = Male	P2 450.11±56.21a 362.28±29.87a		F= Female	P3 655.44±37.25a 649.69±20.08a	TDG 552.77±43.96a 505.99±23.96a

Average daily gains are given as mean of three replicates \pm standard deviations. P1 - Birth weight (kg), P2 - Average Daily Gain (ADG-gr); P3 - Average Daily Gain (ADG-gr); and TDG - average total daily gain (ADG, g/day/ average). Effects were considered statistically significant when $p \le 0.05$. Values in the same column followed by the same letter are not statistically different according to the Tukey HSD test. Beef cows are kept in an extensive system, on pasture, throughout the year. During the winter period (November-April), feeding consists exclusively of hay, in a minimum quantity of 12-15 kg per adult animal. Daily water consumption is approximately 50 -

100 liters per suckler cow, provided from available sources at will. Following the implementation of the grazing regime, two pasture plots with distinct floristic compositions were delimited:

PD1 – Stipa capillata - Carex humilis grassland (Fig. 3), identified in plots 11; the land has a slope of 45–50% and is oriented to the south and southwest. The vegetation cover of the phytocoenosis is approximately 70%, with no woody vegetation, and the degree of vegetation consumption is low, estimated at 10–15%.

PD2 – Festuca rupicola grassland; this species forms perennial herbaceous tufts, with heights varying between 1 and 20 cm.

The land has a slope of 10–15% and south-southwest the same orientation. Vegetation cover is approximately 75%, with no woody vegetation, and the degree vegetation consumption is high, estimated at approximately 70%. In PD1 of block 11, the type of grasslands Stipa capillata - Carex humilis was identified, the study plot having a slope of 45-50% and is oriented south and southwest. The general vegetation coverage of the

phytocenosis is 70%, without woody vegetation. The degree of vegetation consumption is low, approximately 10-15%. (Table 2). In PD2 of block 11, the type of *Festuca rupicola* grasslands was identified. The study plot has a slope with values between 10-15% and is oriented south and southwest. The general vegetation coverage of the phytocenosis is 75%, devoid of woody vegetation. The degree of vegetation consumption is high, approximately 70% (Table 3).

Fig. 3 The distribution of the grassland, grazed with Highland (Source: The original map QGIS)

Table 2 Floristic composition of the type of grassland *Stina capillata - Carex humilis*

Species	Vegetative cover %	Degree of vegetation consumption	
Botriochloa ischaemum	5		
Bromus arvensis	0,5		
Festuca rupicola	2,5		
Festuca valensiaca	2,5		
Medicago falcata	5		
Carex humilis	12,5	5	
Stipa capillata	17,5	3	
Aropyron cristatum	3		
Agropyron intermedium	0,5		
Asperula cynanchica	2,5		
Centaurea micranthos	0,5		
Centaurium erythraea	0,5		
Eryngium campestre	0,5		
Euphorbia cyparissias	0,5		

Filipendula hexapetala	0,5	
Fragaria viridis	0,5	
Peucedanum tauricum	2,5	
Viola spp	0,5	
Plantago media	0,5	
Potentilla arenaria	0,5	
Salvia nemorosa	0,5	
Teucrimum chamaedrys	2,5	
Thymus glabrescens	5	
Veronica orchidea	2,5	
	·	

Table 3 Floristic composition of the type of grassland *Stipa capillata - Carex humilis*

Species	Vegetative cover %	Degree of vegetation consumption		
Agropyron intermedium	2,5	•		
Bothriochloa ischaemum	2,5			
Bromus arvensis	2,5 0,5			
Festuca rupicola	12,5	7		
Festuca valesiaca	2,5	3		
Medicago falcata	2,5 0,5			
Trifolium repens	0,5			
Astragalus onobrychis	0,5			
Achillea millefolium	5			
Carduus acanthoides	5			
Centaurea micranthos	2,5			
Convolvulus arvensis	2,5 0,5 2,5 5			
Eryngium campestre	2,5			
Euphorbia cyparissias	5			
Fragaria viridis	5			
Inula britannica	0,5			
Peudedanum tauricum	0,5			
Veronica spicata	0,5			
Plantago lanceolata	2,5			
Plantago media	2,5 0,5			
Potentilla arenaria	0,5			
Salvia nemorosa	0,5			
Thymus glabrescens	2,5			
Xeranthemum annuum	2,5			
Artemisia austriaca	2,5			
Adonis vernalis	0,5			
Carthamus lanatus	2,5			

CONCLUSION

To maintain their genetic origin and be recognized as Highland

cattle for meat production, imported cattle must be officially registered in

the national herdbook. This measure is essential for maintaining genetic traceability and properly integrating these animals into selection and breeding programs. The Highland breed has adapted well to the soil and climatic conditions of the Cojocna area. However, these animals have been observed to show a marked preference for shaded areas. Therefore. management pasture should include maintaining planting trees in grazing areas to ensure a suitable microclimate. The extensive free-grazing system is generally suitable for this rustic breed. In some areas, however, intensive pasture use has led to overgrazing. This has favored the establishment of the region's typical Festuca rupicola vegetation and nitrophilous species, indicating an imbalance in the composition. The Highland breed efficiently utilizes pastures with average productivity and plays an important role in maintaining and improving the conservation status of the Natura 2000 protected habitat Suatu-Coiocna-Crairât. Through appropriate grazing, these animals contribute to maintaining biological and preserving diversity traditional landscape. In Cojocna, conditions, under specific Highland breed has achieved average weight gains within the breed's characteristic parameters. This confirms its adaptability and zootechnical potential in the area.

RECOMMENDATION

Research on the adaptability of the Highland breed in different farming systems and on various types of pastures should continue and expand, focusing on the impact biodiversity and economic efficiency. Switching to an organized grazing system based on the division of grazing areas is also recommended. This management strategy enables more balanced use feed resources. prevents overgrazing. and promotes the natural regeneration of grass.

REFERENCES

- Nota, G., Svensk, M., Barberis, D., Fründ, D., Pagani, R., Pittarello, M., Probo, M., Ravetto Enri, S., Lonati, M., & Lombardi, G. (2024). Foraging behavior of Highland cattle in silvopastoral systems in the Alps. Agroforestry Systems, 98, 491–505.
- 2. Păcurar, F., & Rotar, I. (2014). Study methods and interpretation of meadow vegetation. Cluj-Napoca: Risoprint.
- 3. Pauler, C., Zehnder, T., Staudinger, M., Lüscher, A., Kreuzer, M., Bérard, J., & Schneider, M. K. (2022). Thinning the thickets: Foraging of hardy cattle, sheep and goats in green alder shrubs. Journal of Applied Ecology, 59(5), 1394–1405.
- 4. Ranta, M., & Mălinaș, A. (2024). Contributions to More Sustainable and Climate-Resilient Cattle Production: Study of Performance of Galloway and Highland Breeds in Transylvania, Romania.

- 5. Ranta, M., Păcurar, F., & Ghețe, I. (2024). The Adaptation of the Galloway Breed in the Climatic Conditions of the Cojocna Farm.
- 6. Sambraus, H. H. (2016). Farbatlas Nutztierrassen: 263 Rassen in Wort und Bild (p. 64). Stuttgart: Eugen Ulmer Verlag.
- 7. Svensk, M., Mariotte, P., Terranova, M., Pittarello, M., Nota, G., Fründ, D., Dubois, S., Manzocchi, E., Napoleone, F., Meese, S., Lombardi, G., Allan, E., & Probo, M. (2023). Nitrogen translocation by Highland cattle grazing in Alnus viridis-encroached pastures. Nutrient Cycling in Agroecosystems, 126, 127–141.
- 8. Țucra, I., Kovacs, A. J., Roşu, C., Ciubotariu, C., Chifu, T., Neacşu, M., Bărbulescu, C., Cardaşol, V., Popovici, D., Simtea, N., Motcă, Gh., Dragu, I., & Spirescu, M. (1987). Principale tipuri de pajişti din R. S. România. Bucuresti: Editura Poligrafică "Bucurestii Noi".
- 9. ***https://www.highlandcattlesociety.com
- 10. ***https://hyndmanbeef.com

THE QUALITY INDICES OF FODDER FROM Cichorium intybus AND Carthamus tinctorius, GROWN UNDER THE CONDITIONS OF THE REPUBLIC OF MOLDOVA.

ŢÎŢEI Victor

"Alexandru Ciubotaru" National Botanical Garden (Institute), Moldova State University, Republic of Moldova, MD 2002 Chisinau, 18 Pădurii str.

Corresponding author's email: vic.titei@ gmail.com; victor.titei@gb.usm.md;

Abstract. We evaluated the quality indices of fodder produced from chicory (Cichorium intybus) and safflower (Carthamus tinctorius) grown in monoculture on the experimental plots of the "Alexandru Ciubotaru" National Botanical Garden (Institute), MSU, Chişinău, Republic of Moldova. The results revealed that the dry matter of whole plants of studied species contained: 9.22-11.50% CP, 8.68-10.84% minerals, 27.80-32.91% CF, 40.93-51.96% NFE, 5.02-15.80% soluble sugars, 6.61-9.04 % starch, 9.40-11.80 g/kg Ca, 3.00 g/kg P; the nutritive energy value was 9.10-9.83 MJ/kg ME and the net energy for lactation (NEl) – 5.04-5.63 MJ/kg. The prepared silages had the following characteristics: pH=4.14-4.19, 25.0-35.7 g/kg lactic acid, 2.7-5.12 g/kg acetic acid. The dry matter of the silages contained 8.42-9.22% CP, 9.76-8.425% minerals, 33.20-33.51% CF, 41.95-46.22% NFE, 2.09-4.09% soluble sugars, 7.19-10.00 % starch, 9.70-15.10 g/kg Ca, 2.50-2.80 g/kg P, with nutritive energy value 9.18-9.21 MJ/kg ME and net energy for lactation 5.09-5.14 MJ/kg. The green mass and the silage prepared from Cichorium intybus and Carthamus tinctorius contain a lot of nutrients are rich in essential nutrients, making them suitable alternatives for the traditional livestock fodders.

Keywords: biochemical composition, forage value, green mass, hay, Cichorium intybus, Carthamus tinctorius, silage.

INTRODUCTION

In the context of climate change, diversifying the range of forage crops used to provide livestock with a stable and balanced diet plays a crucial role in the restoration and sustainable development of agriculture, as well as in ensuring food safety and security.

The Asteraceae family, the largest group of flowering plants, comprises approximately 27,773 species. Several of these species play important roles as food, forage,

industrial, medicinal, ornamental or energy crops.

As part of ongoing activities to conserve and sustainably utilize plant genetic resources, new taxa from the Asteraceae family have been identified and mobilized over the years. These taxa originate both from local flora and from other floristic regions, and possess a wide range of economic uses. Research has led to the identification of valuable plant forms suitable for the development of new varieties. Notably, studies have highlighted the biological characteristics and forage potential species such of as Cynara cardunculus. Echinacea purpurea, Helianthus annuus. Helianthus mollis. Helianthus strumosus, Helianthus tuberosus. Inula helenium, Silphium perfoliatum, Silybum marianum etc. (ȚĨŢEI et al., 2013; ŢĨŢEI & COŞMAN, 2016; TÎTEI, 2020, 2024; COŞMAN et al., 2023 GUŢU et al., 2023). Cichorium L. is a small genus of the *Asteraceae* family, consists of six species, while the two cultivated Cichorium intybus and Cichorium endivia (BIRSA et 2023). Chicory, al., Cichorium intybus L. is native to Europe, temperate Asia, northern Africa, and has been naturalized in other regions. It is perennial herbaceous plant characterized by fusiform, twisted roots, up to 1-1.5 cm thick and up to 1.5 m long. It has an erect, branched stem with prominent grooves and is covered in rough hairs, reddish brown, wooded at base, containing latex, 30-120 cm tall. The basal arranged in a oblanceolate, petiolate 7–30 cm long, 1–12 cm wide, apex acute, margins toothed to pinnatisect with toothed lobes, pubescent to glabrous; the lower stem leaves similar to the basal ones; the upper leaves alternate, sessile, smaller, cordate at the base, covered with hairs. The ligulate flowers are blue, found in flower inflorescences, which typically solitary or grouped by 2-3, terminal or sometimes axillary. The fruit is an achene, 2-3 mm long, with a very short pappus. It blooms from July to September. Cichorium good tolerance *intybus* has drought and frost and low tolerance against waterlogging and salt. It requires deep, well-drained fertile soil with good nitrogen content. Cichorium intybus has been researched and cultivated in several research centers as a food, fodder and medicinal plant (MORARU et 2012; CIOCÂRLAN, DRAGOMIR et al., 2018; BIRSA et al., 2023), also it is a good source of protein feed and nectar for bees, honey productivity 166.59 - 301.34 kg/ha. (ADAMCHUK et al. 2017). The genus Carthamus L., Asteraceae comprises 48 accepted family species names, of which only Carthamus tinctorius L., is cultivated and the rest are wild and weedy in The areas of origin of habit. safflower, Carthamus tinctorius, are Africa, the Middle-East and Asia. It is an annual herbaceous plant with a strong erect, glabrous, branched stem, 30-150 cm in height. The leaves are ovate- obovate, alternate, the lower ones are sessile and acuminate. The inflorescence is a capitulum dense of flowers. surrounded by an involucre of green ovoid bracts. The florets are small. tubular, sessile, composed on type 5. The fruit is a smooth, shiny and angular achene. This species is a drought, heat, cold and salinity tolerant crop, it is considered as a climate-smart crop, adaptable to variable environmental conditions and soils as compared with other species in the Asteraceae family. Safflower is a multipurpose oil seed crop that can be used for the production of cooking oil, as a food crop, cut flowers, fodder crop for both fresh and preserved animal feed. industrial crop

production and as a medicinal crop (DOBRIN & MARIN, 2015: HEUZÉ & 2015; TRAN, IVANOVA, 2016; KOCAMAN et 2016; **EMONGORN** al., OAGILE. 2017: PEIRETTI. 2017: SEENO 2023; LÓPEZ-JARA et al. 2025).

The main objective of this study was to evaluate the quality indices of fodder from two *Asteraceae* species – *Cichorium intybus* and *Carthamus tinctorius* – cultivated under the conditions of the Republic of Moldova.

MATERIALS AND METHODS

The study was conducted using a local ecotype of chicory (Cichorium intybus) and an introduced spineless ecotype of safflower (Carthamus both cultivated tinctorius), monoculture on an experimental plot "Alexandru Ciubotaru" at the National Botanical Garden (Institute) of Moldova State University (MSU), located in Chişinău (latitude 46°58′25.7″N. longitude 28°52′57.8″E). Traditional crops, specifically the corn hybrid 'GW9003' (Zea mays) and the hybrid 'HS9729' sunflower (Helianthus annuus), served controls. Plant samples of *Cichorium* intybus, Carthamus tinctorius, and Helianthus annuus were collected at the flowering stage, while Zea mays was harvested at the wax stage of grain development. The harvested biomass was chopped into 1.5-2.0 cm pieces using a laboratory forage chopper. The dry matter content was determined by drying samples to a

constant weight at 105°C. Silage was prepared from the chopped green mass by compressing it into wellsealed glass containers, which were stored at ambient temperatures (18– 20°C). After 45 days, the containers were opened, and the sensorial and fermentation characteristics of the preserved forage were assessed according to the standard SM 108* accepted in the Republic Moldova.

Both green mass and fermented fodder samples were dehydrated in a forced-ventilation oven at 60°C. Once dried, the biological material was finely ground using a laboratory mill. Fodder quality ball evaluated based on several parameters: crude protein (CP), crude fiber (CF), crude fat (EE), nitrogen-free extract (NFE), soluble sugars (SS), starch, ash, calcium (Ca), phosphorus (P), silage pH, and concentrations of organic (lactic (LA), acetic (AA), and butyric (BA) in both free and fixed forms. Energy values, namely: gross energy (GE), metabolizable energy (ME), and net energy for lactation (NEI), were calculated following standard methodological procedures:

GE=23.9xCP+39.8xEE+20.1xCF+17.5xNFE;

ME=14.07+0.0206xEE-0.0147xCF-0.0114xCP+4.5%; NEI=9.10+0.0098xEE-0.0109xCF-

NEI=9.10+0.0098XEE-0.0109XCF-0.0073xCP.

RESULTS AND DISCUSSION

At harvest, *Cichorium intybus* plants averaged 120-126 cm in height, while *Carthamus tinctorius* plants

measured 97-105 cm. The fresh mass productivity of the introduced spineless safflower ecotype reached 3.74 kg/m², corresponding to 1.10 kg/m² of dry matter. In comparison, the local ecotype of chicory yielded 5.89 kg/m² of fresh mass, or 1.31 kg/m² of dry matter.

Several studies have reported varying productivity levels for these species. CAZZATO et al. (2011) found that safflower dry matter productivity ranged from 4.5 to 11.6 t/ha. ELGERSMA et al. (2014) reported a herbage productivity of 9,960 kg/ha for chicory. UMAMI et al. (2019) observed that Cichorium intybus could achieve up to 28.12 t/ha/year of organic matter. NECIU et al. (2017) indicated that under different natural and technological conditions, pure chicory cultures yielded between 30-60 t/ha of green mass or 7-15 t/ha of dry matter. DRAGOMIR et al. (2018) noted a dry matter yield of 6.59 t/ha for nonfertilized chicory, increasing to 8.54 t/ha with fertilization. OCHOA-ESPINOZA et al. (2022b) reported safflower dry matter productivity varied from 4,461 to 10,816 kg/ha. JABARI et al. (2023) recorded the highest forage yield studied safflower among the cultivars at 52,103 kg/ha of fresh mass or 11,900 kg/ha of dry matter. Similarly, KARGAR et al. (2024) found that the 'Golmehr' cultivar of safflower, harvested at the branching stage, achieved yields of 42,229 kg/ha fresh mass and 11,266 kg/ha dry matter.

The nutrient composition and energy value of the harvested fresh fodder

Cichorium from intybus and Carthamus tinctorius are presented in Table 1. Comparative analysis of the whole-plant nutrient content showed that the fresh forage of both species had a higher crude protein level than that of traditional forage crops such as corn (Zea mays) and sunflower (Helianthus annuus). Chicory forage was notable for its significantly higher crude content, while safflower fodder had a crude lower fat concentration compared to corn and sunflower. The crude fiber content in safflower fodder was within the optimal range, while in chicory forage, it did not differ significantly from that in sunflower forage. Safflower fodder had higher levels of nitrogen-free extract and starch than sunflower, but these values were lower than those found in corn forage. Chicory forage contained less soluble sugar but more starch compared to both sunflower and safflower. The ash content in chicory fodder was similar to that of sunflower but higher than in safflower and corn. For both Carthamus tinctorius and Cichorium *intybus*, the calcium and phosphorus content exceeded that found in corn forage. However, as compared to sunflower, both fodders had lower calcium higher content but phosphorus levels. The gross energy concentrations in safflower sunflower fresh fodder were similar. but both were lower than those in chicory and corn forage. Safflower forage had higher metabolizable energy (ME) and net energy for lactation (NEI) than chicory and sunflower, though still lower than in

Various studies corn. in the specialized literature report differing results regarding the nutrient content of harvested green biomass from Carthamus tinctorius (safflower) and Cichorium intybus (chicory) plants. According to LESHEM et al. (2000), safflower herbage contained 10.0-14.6% crude protein (CP) and 489– 656 g/kg dry matter digestibility (DMD). STANFORD et al. (2001) reported that Carthamus tinctorius harvested at full bloom had a forage composition of 9.7% CP, 1.6% ether extract (EE), 32.1% neutral detergent fiber (NDF), 23.1% acid detergent

fiber (ADF), and 636 g/kg effective rumen degradability of dry matter. BROWN & MOOT (2004) observed palatable fraction that the Cichorium intybus forage contained 18% and 13.3 CP MJ/kg metabolizable energy (ME), while the unpalatable fraction had 8% CP and 9.4 MJ/kg ME. WEINBERG et al. (2007) reported safflower herbage nutrient values of 12.2-22.1 g/kg nitrogen, 287-364 g/kg ADF, 410-478 g/kg NDF, 66-104 g/kg watersoluble carbohydrates (WSC), and 521-693 g/kg DMD.

Table 1. The nutrient composition and energy value of fresh forage biomass from Cichorium intybus and Carthamus tinctorius as compared with traditional crops

Indices	Cichorium	Carthamus	Helianthus	Zea mays
	intybus	tinctorius	annuus	
Crude protein, % dry matter	11.50	9.22	8.15	6.93
Crude fats, % dry matter	3.82	2.34	3.00	2.61
Crude cellulose, % dry matter	32.91	27.80	33.11	17.24
Nitrogen free extract, % dry matter	40.93	51.96	44.96	69.73
Soluble sugars, % dry matter	5.02	15.80	12.30	6.81
Starch, % dry matter	9.04	6.61	3.99	23.05
Ash, % dry matter	10.84	8.68	10.78	3.48
Calcium, g/kg dry matter	11.80	9.40	12.40	2.30
Phosphorus, g/kg dry matter	3.00	3.00	2.90	2.40
Gross energy, MJ/kg dry matter	18.04	17.82	17.67	18.37
Metabolizable energy, MJ/kg dry matter	9.10	9.83	8.89	11.29
Net energy for lactation, MJ/kg dry matter	5.04	5.63	4.98	6.93

Table 2. The fermentation profile, chemical composition and energy value of silage from *Cichorium intybus* and *Carthamus tinctorius* as compared with traditional crops

Indices	Cichorium	Carthamus	Helianthus	Zea mays
	intybus	tinctorius	annuus	
pH index	4.19	4.14	4.39	3.73
Organic acids, g/kg dry matter	35.7	25.0	48.9	45.0
Free acetic acid, g/kg dry matter	1.0	0.6	4.2	3.6
Free butyric acid, g/kg dry matter	0	0	0.1	0
Free lactic acid, g/kg dry matter	2.3	6.0	10.8	16.7
Fixed acetic acid, g/kg dry matter	4.1	2.1	6.5	3.8
Fixed butyric acid, g/kg dry matter	0.1	0.1	0.8	0.2

Fixed lactic acid, g/kg dry matter	28.2	16.2	26.5	20.7
Total acetic acid, g/kg dry matter	5.1	2.7	10.7	7.4
Total butyric acid, g/kg dry matter	0.1	0.1	0.9	0.2
Total lactic acid, g/kg dry matter	30.5	22.2	37.3	37.4
Acetic acid, % of organic acids	14.29	10.80	21.88	16.44
Butyric acid, % of organic acids	0.30	0.45	1.84	0.44
Lactic acid, % of organic acids	85.41	88.75	76.28	83.12
Crude protein, % dry matter	10.92	8.42	7.67	6.83
Crude fats, % dry matter	4.17	3.06	2.54	3.50
Crude cellulose, % dry matter	33.20	33.51	36.42	16.47
Nitrogen free extract, % dry matter	41.95	46.22	42.64	69.69
Soluble sugars, % dry matter	2.09	4.09	0.43	0.79
Starch, % dry matter	10.00	7.19	0.66	24.82
Ash, % dry matter	9.76	8.80	10.73	3.52
Calcium, g/kg dry matter	15.10	9.70	10.60	2.30
Phosphorus, g/kg dry matter	2.50	2.80	2.10	2.50
Gross energy, MJ/kg dry matter	18.37	18.05	17.63	18.53
Metabolizable energy, MJ/kg dry matter	9.18	9.21	8.37	11.59
Net energy for lactation, MJ/kg dry	5.09	5.14	4.82	7.14
matter				

ARSLAN et al. (2008) found that pure safflower herbage contained 7.3% CP, 27.6% crude fiber (CF), 35.8% ADF, 44.6% NDF, 17.2 g/kg calcium (Ca), and 3.4 phosphorus (P). In contrast, mixtures of field pea and safflower showed improved nutrient profiles: 12.2-16.4% CP, 22.9-25.7% CF, 30.8-33.4% ADF, 39.1-42.4% NDF, 12.6-15.4 g/kg Ca, and 3.2-3.3 g/kg P. BAR-TAL et al. (2008) indicated that the forage value of Carthamus tinctorius varied depending nitrogen fertilization and irrigation levels, with results ranging between the following indices 13.1-20.5 g/kg nitrogen, 4.8-8.8% ash, 30.9-43.9% ADF,44.8-56.8% NDF, 4.70-8.98% WSC, and 521-693 g/kg in vitro dry matter digestibility (IVDMD).

CHAPMAN et al. (2008) reported that during its establishment year, chicory produced 1,350-1,924 kg/ha

of dry matter with a CP content of 14.4-16.6% and 59.2% NDS. MASSOUD et al. (2009) found that chicory leaves contained 14.70% CP, 10.91% ash. 16.78% CF. 70.71% total carbohydrates, 7.80% total soluble sugars, and 0.29% Ca. **PEIRETTI** (2009)analyzed safflower forage harvested at five morphological stages, nutrient and energy concentrations ranging from 83-157 g/kg DM, 12.4–27.2% CP, 2.2–2.9% CF, 17.2-41.5% ADF. 31.3-49.1% NDF, 10.7–17.1% ash, and 16.2– 17.8 MJ/kg gross energy. HAYES et al. (2010) noted that whole chicory plants harvested in early summer contained 13.1% CP, 43.2% NDF, 24.8% ADF, 12.6% ash, 64.24% DMD, and 9.07 MJ/kg ME. SUN et al. (2011) reported that chicory forage had 89 g/kg DM, 11.7% CP, 28.1% NDF, 21.3% ADF, 8.0%

ADL, and 14.4% ash. Finally, KHAN et al. (2013) found that intybus contained Cichorium 13.51% CP, 49.50% NDF, 38.73% ADF, 2.86% ash, and 0.62% Ca. For comparison, Medicago polymorpha showed higher values: 21.54% CP, NDF. 42.83% ADF. 53.64% 11.28% ash. and 1.02% Ca. DANIELI et al. (2011) reported that the nutritional characteristics of spineless safflower grown under Mediterranean climatic conditions were as follows: 11-17% CP, 39.8-43.9% CF, 33.1-35.4% aADF, 42.9-45.9% aNDF, 7.4-11.7% ADL, and 12.4-13.2% ash. ASGHARZADEH et al. (2013) found that Carthamus tinctorius herbage, depending on the amount and type of applied fertilizers, contained 343-380 g/kg dry matter, 9.5-13.8% CP, 37.2-42.1% NDF, 32.7-35.7% ADF, 5.2-5.4% WSC, 6.0-11.7% ash, 10-12 g/kg Ca, 2.9-3.9 g/kg P, 57.1-68.2% OMD, and 8.5-10.0 MJ/kg DANIELI (2014)ME. et al. findings confirmed similar for safflower spineless under Mediterranean conditions, reporting values of: 11-17% CP, 39.8-43.9% CF, 33.1-35.4% aADF, 42.9-45.9% aNDF, 7.4-11.7% ADL, and 12.4-13.2% ash. PILUZZA et al. (2014) the chemical reported that chicory composition of leaves included 162-200 g/kg CP, 290.6-336.8 g/kg ADF, 366-406.5 g/kg 570.4-638.2 NDF, g/kg digestible nutrients. 621.6-662.6 g/kg digestible dry matter, a relative feed value of 143.7-170.6, and 1.401-1.539 Mcal/kg NEl.RETA SANCHEZ et al. (2014) found that

Carthamus tinctorius herbage, depending row spacing, on contained 17.1-19.5% CP, 43.7-48.1% NDF, 33.3-35.7% ADF, and 1.37-1.43 Mcal/kg NEl. HEUZÉ & TRAN (2015) reported that the composition biochemical and nutritive value of safflower dry matter was: 15.0% CP, 11.3% ash, 14.0 g/kg Ca, 3.4 g/kg P, 65.1% digestible organic matter, 17.5 MJ/kg GE, and 9.3 MJ/kg ME. Muir et al. (2015) found that forage from second-vear chicory crop contained 271 g/kg dry matter and the following composition: 13.57% ash, 6.1% CP, 48.8% NDF, 32.4% ADF, with an estimated digestible energy of 7.6 MJ/kg. KIRILOV et al. (2016) reported that Cichorium intybus contained 7.56% ash, 7.16% CP, 35.26% CF, and 46.68% NFE, whereas Medicago sativa had 8.14% ash, 16.92% CP, 1.41% EE, 27.53% CF, and 46.00% NFE. CAĞRI & KARA (2018) reported that the forage value of safflower green mass was: 8.10% CP, 6.51% DP, aNDF, 31.99% 39.05% aADF. 4.75% ADL, and 2040.83 kcal/kg ME. DRAGOMIR et al. (2018) found that the crude protein content in chicory forage was 22.62% in the non-fertilized variant and 25.06% in nitrogen-fertilized the variant. NIDERKORN et al. (2019) reported that chicory forage contained 103 g/kg dry matter, 14.2% CP, 35.3% NDF, 20.8% ADF, and 6.3% ADL. SUN et al. (2020) noted that chicory forage had 11.4% CP, 23.9% NDF, 18.8% ADF, 5.1% hemicellulose (HC), 10.6% cellulose (Cel), and 19.6% ash. AMALYADI et al.

(2022) stated that chicory forage harvested at 45 days had the nutritional values following depending on treatment: 17.23-19.41% CP, 12.12-13.43% CF, 76.11-77.53% DDM, and 70.36-ÇALIŞKAN 73.69% OMD. YÜKSEL (2022) found that the nutrient composition of safflower forage dry matter was: 8.36–12.29% 31.30-47.92% NDF. 27.61-38.59% ADF. OCHOA-ESPINOZA et al. (2022a) found that the forage value of spiny safflower cultivars was as follows: 22.6-23.3% CP, 46.7-47.7% NDF, 38.1-38.9% ADF, 64-65% IVDMD, 5.36-5.48 MJ/kg NEl. and contrast, the spineless safflower cultivar 'Selkino' contained 24.7% CP, 47.5% NDF, 39% ADF, 67.4% IVDMD, and 5.73 MJ/kg NEl. LÓPEZ-JARA et al. (2022) reported that the forage value of Carthamus tinctorius was 16.2-17.9% CP, 40.2-46.3% NDF, 31.8-38.0% ADF, and 5.4-6.1 MJ/kg NEl, while Brassica napus forage had, respectively, 17.1-19.9% CP, 36.8-45.7% NDF, 30.4-35.9% ADF, and 5.7-6.3 MJ/kg NEl. OCHOA-ESPINOZA et al. (2022b) revealed that the forage from Carthamus tinctorius cultivars was characterized by 17.79-24.35% CP, 49.46-50.91% NDF. 39.82-43.34% ADF. 53.58-58.58% IVDMD, and 4.37-4.87 MJ/kg NEl. STOYCHEVA & GEORGIEVA (2022) reported that chicory green mass contained 212.4 g/kg dry matter, with 8.16% ash, 9.48% CP, 27.84% CF, and 51.27% NFE. VERMA et al. (2022) found that the chemical composition of first-cut

chicory plants included 12.2-18.1% CP, 34.6-46.4% NDF, and 21.2-28.1% ADF. At the second cut, chicory fodder had 13.7-22.0% CP, 30.1-44.9% NDF, and 23.2-30.1% ADF. BASBAG & SAYAR (2023) reported that the fodder harvested at the blooming stage from *Cichorium* intybus contained 20.55% 30.19% NDF, 21.78% ADF, 1.46% Ca, 0.30% P, 71.74% DMD, 11.43 MJ/kg ME, and a relative feed value of 221.7. In comparison, the fodder marianum Sylibum 18.59% CP, 30.38% NDF, 24.61% ADF, 1.54% Ca, 0.34% P, 69.73% DMD, 11.01 MJ/kg ME, and RFV = 219.3. MIKULOVÁ et al. (2023) reported that the nutrient composition of dry matter from chicory plants included 19.8% CP, 38.4% NDF, 28.2% ADF, and 7.4% ash. SEENO (2023) found that the nutritive value of harvested chicory monoculture in spring was: 12.9-16.3% CP, 32.3% aNDF, 23.7-24.1% ADF, and 11.8-12.1% ash, but in summer, the values were 10.4-11.3% CP, 35.4-37.0% aNDF, 26.7-27.9% ADF, and 12.4% ash, respectively. JABARI et al. (2023) observed that the crude protein in safflower plants content harvested at the branching stage was 14.57%, while the maximum CP content, 19.22%, was observed at the flowering stage. KARGAR et al. (2024) reported that safflower forage harvested during the stem elongation stage contained 11.6-13.9% CP, 8.5-15.7% WSC, 28.6-32.0% CF, 9.5-10.2% ash, 61.8-66.9% DDM, 52.5-59.8% TDN, and an RFV of 85.5-107.6, in contrast,

the forage harvested the branching stage had 18.5-19.8% CP, 8.4-13.2% WSC, 31.5-35.5% CF, 10.1-10.6% ash, 65.9-71.5% DDM, 56.0-64.2% TDN, and an RFV of 86.1-129.0. Silage making is a widely used and effective method of forage preservation and serves as a critical strategy for ensuring a consistent. high-quality fodder supply throughout the year. During sensory evaluation, the ensiled mass of Carthamus tinctorius and Cichorium intybus was found to contain dark green leaves and yellow stems. The silage emitted a specific but mild and pleasant smell. Its texture remained consistent as compared to the original green mass, showing no signs of mold or mucus formation. The results of the silage quality indices for safflower and chicory are presented in Table 2. Safflower silage had a dry matter content of 282.5 g/kg, while chicory silage contained 264.4 g/kg. The pH kev indicator value. a fermentation quality, ranged from 4.14 to 4.19 for both silages. These values were higher than those typically observed in corn silage but within the optimal range when compared with sunflower silage. Total organic acid concentrations ranged from 25.0 g/kg in safflower silage to 35.7 g/kg in chicory silage - both lower than those found in corn and sunflower silages. Most organic acids were present in bound form. Acetic acid concentrations in both safflower and chicory silages were lower than in corn and sunflower silages. Butyric acid was detected only in trace amounts (0.1

g/kg), significantly lower than in sunflower silage. Lactic constituted 85.4-88.7% of the total organic acids in both silages, indicating a favorable fermentation process and good silage quality. During ensiling, the biochemical composition underwent noticeable The levels of crude changes. protein, soluble sugars, phosphorus decreased, while crude fat and calcium concentrations increased. In safflower silage, crude fiber content rose significantly, while nitrogen-free extract declined. The metabolizable energy (ME) and net energy for lactation (NEI) in safflower silage were lower than in the original fresh mass. In contrast, chicory silage showed no significant difference in energy values as compared to its initial green mass. It is worth noting that chicory and safflower silages were characterized by higher contents of crude protein, crude fat, soluble sugars, starch, phosphorus, metabolizable energy and net energy for lactation compared to sunflower silage. When compared with corn silage, both chicory and safflower silages had higher concentrations of crude protein, crude fiber, soluble sugars, calcium, and phosphorus. corn silage had the However. highest overall energy values among the four silage types. Several sources describe literature the quality indices of silage prepared from Carthamus tinctorius and Cichorium intybus plants. For example, WEINBERG et al. (2002) found that the silage made from wilted Carthamus tinctorius plants

contained 290-411 g/kg dry matter, with a pH of 4.46, 19-20 g/kg lactic acid, 4-6 g/kg acetic acid, 85-89 g/kg crude protein, 86-92 g/kg ash, 15-28 g/kg water-soluble and carbohydrates. Inoculated safflower silages had improved fermentation characteristics: pH 3.9-4.1, 42-47 g/kg lactic acid, 6-8 g/kg acetic acid, and 12-20 g/kg WSC. CORLETO et al. (2005) reported that safflower silage produced from plants harvested at 25% flowering stage had a pH of 4.46, 18.7 g/kg lactic acid, 4.7 g/kg acetic acid, and 376 g/kg dry matter. The nutritional profile included 8.0% CP, 49.3% NDF, 37.3% ADF, 5.9% ADL, 5.27% WSC, and 6.9% ash. In contrast, the silage made from plants inoculated with Lactobacillus plantarum showed improved values: pH 4.15, 29.2 g/kg lactic acid, 5.7 g/kg acetic acid, 399 g/kg dry matter, 8.6% CP, 51.2% NDF, 37.6% ADF, 6.1% ADL, 4.97% WSC, and 9.8% ash. WEINBERG et al. (2007) noted that *Carthamus* tinctorius silage produced under different irrigation and nitrogen fertilization regimes had a pH range of 4.0-4.8, and contained 34-127 g/kg lactic acid, and 4-15 g/kg acetic acid. ASGHARZADEH et al. (2013) found that safflower silages had pH values of 4.7-4.9, and contained 90-130 g/kg lactic acid, 290-433 g/kg dry matter, 12.3-14.8% CP, 45.3-49.0% NDF, 37.2-42.1% ADF, 1.9-2.8% WSC, 9.0-12.3% ash, 10-13 g/kg Ca, 3.0-4.2 g/kg P, 56.2-65.4% OMD, and 8.2–9.6 MJ/kg ME. HEUZÉ & TRAN (2015)reported that

safflower silage contained 12.6% CP, 31.4% CF, 8.9% ash, 70.2% DOM, 17.5 MJ/kg gross energy, and 10.6 MJ/kg ME. PEÑA-ESPINOZA et al. (2016) indicated that chicory silage had 357 g/kg dry matter, 20.7% ash, 9.3% CP, 32.6% NDF, 62% OMD, and 6.5 MJ/kg ME. SÁNCHEZ-DUARTE et al. (2018) reported that Carthamus tinctorius silage contained 372.6 g/kg dry matter, 17.7% CP, 45.16% NDF, 491.5 g/kg TDN, and 1.11 Mcal/kg NEl. STOYCHEVA et al. (2019) observed that Cichorium intybus silage had 195 g/kg dry matter and a pH of 4.69, while chicory haylage contained 521 g/kg dry matter and a pH of 4.25. CAN et al. (2020) found that chicory silage characterized by a pH of 4.19, 17.8 g/kg lactic acid, 1.43 g/kg acetic acid, and 0.16 g/kg butyric acid. The silage had 267.5 g/kg dry matter, 11.21% ash, 1.13% Ca, 0.37% P, 15.35% CP, 33.11% NDF, and 26.30% ADF. STOYCHEVA &GEORGIEVA (2022) reported that chicory silage contained 212.4 g/kg dry matter, with a pH of 4.04, 8.73% ash, 9.15% CP, 31.53% CF, and 46.72% NFE. FORD et al. (2024) stated that chicory silage had 8.7% CP, 51.7% NDF, 46.0% ADF, 1.06 Mcal/kg NEl, and a relative feed value of 96. LOPEZ-JARA et al. (2025) found that the silage prepared from Carthamus tinctorius had a pH of 4.97, 448.1 g/kg dry matter, 17.88% CP, 37.10% NDF, 28.45% ADF, 10.11% ADL. 19.12% ash, 657.0 g/kg TDN, and 1.57 Mcal/kg NEl. In comparison, Avena sativa silage had a pH of 4.75, 388.0 g/kg dry matter, 13.76% CP, 52.02% NDF, 32.20% ADF,

4.26% ADL, 12.84% ash, 604.2 g/kg TDN, and 1.38 Mcal/kg NE.

CONCLUSIONS

The green mass forage and the silage prepared from *Cichorium intybus* and *Carthamus tinctorius* are rich in crude protein and other

essential nutrients, making them suitable alternatives for the traditional livestock fodders.

ACKNOWLEDGEMENTS

The study has been carried out in the framework of the subprogram no. 01.01.02 "Identification of valuable forms of plant resources with multiple uses for the circular economy""

REFERENCES

- 1. Adamchuk L., Bilotserkivets T., Šimková J. (2017). Nectar and pollen productivity of common chicory. *Agrobiodiversity for Improving Nutrition Health and Life Quality*, Nitra, 1-7
- 2. Amalyadi R., Umami N., Fitrianto N.A., Hanim C., Suwignyo B. (2022). Effect of compost tea and harvest age on productivity, nutrient content, and in vitro digestibility cichorium intybus. *Buletin Peternakan*, 46(3): 140-147.
- 3. Arslan B., Ates E., Tekeli A.S., Esendal E. (2008). Feeding and agronomic value of field pea (*Pisum arvense* L.)- safflower (*Carthamus tinctorius* L.) mixtures. In. 7th international Safflower Conference. Wagga, Australia.
- 4. Asgharzadeh F., Nasri M.H.F., Behdani M.A. (2013). Effects of nitrogen and phosphorus fertilizers on nutritive value of safflower forage and silage. *Journal of Animal and Poultry Sciences*, 3:66-75.
- 5. Bar-Tal A., Landau S., Li-Xin Z., Markovitz T., Keinan M., Dvash L., Brener S., Weinberg G. (2008). Fodder quality of safflower across an irrigation gradient and with varied nitrogen rates. *Agronomy Journal*, 100: 1499–1505.
- 6. Basbag M., Sayar M. (2023). Forage quality traits of some *Asteraceae* family species found in natural flora of Southeastern Anatolia. *Journal of Agricultural, Food and Environmental Sciences*, 77:29-37.
- 7. Birsa M.L.; Sarbu L.G. Health benefits of key constituents in *Cichorium intybus* L. (2023). *Nutrients*, 15:1322.
- 8. Brown H., Moot D. (2004). Quality and quantity of chicory, lucerne and red clover production under irrigation. *Proceedings of the New Zealand Grassland Association*, 66:257–264.
- 9. Çalişkan R., Yüksel O. (2022). The effects of different sowing density and harvest periods on dry matter yield and some quality traits of safflower (*Carthamus tinctorius* L.) *Akademik Ziraat Dergis*. 11(1): 147-154.

- 10. Can M., Ayan I., Gülümser E., Acar Z., Öztürk E. (2020). Determination of silage quality of different companion crops with chicory (*Cichorium intybus* L.). *Turkish Journal of Agricultural Research*, 7(3): 296-304.
- 11. Çağrı A., Kara K. (2018). The effect of safflower on the in vitro digestion parameters and methane production in horse and ruminant. *Acta Veterinaria Eurasia*, 44(2): 73-84.
- 12. Ciocârlan N. (2014). Cicoarea un remediu ideal pentru sănătatea ta. *Mediul Ambiant*, 6(78):39-40.
- 13. Chapman G., Bork E., Donkor N., Hudson, R. (2008). Forage yield and quality of chicory, birdsfoot trefoil, and alfalfa during the establishment year. *The Open Agriculture Journal*, 2: 68-74.
- 14. Corleto A., Cazzato E., Laudadio V., Petrera F. (2005). Evolution of biomass and quality of safflower during the reproductive stage for hay and ensiling purposes. In. *6th International Safflower Conference*, Istanbul, Turkey, 69-73.
- 15. Coşman S., Danilov A., Petcu I., Ţîţei V., Coşman V., Bahcivanji M. (2023). Diversificarea bazei furajere prin studierea şi valorificarea unor resurse furajere noi şi mai puţin cunoscute în Republica Moldova. Maximovca. Print-Caro. 340 pp
- 16. Danieli P.P., Primi R., Ronchi B., Ruggeri R., Rossini F., Del Puglia S., Cereti C.F. (2011). The potential role of spineless safflower (*Carthamus tinctorius* L. var. *inermis*) as fodder crop in central Italy. *Italian Journal of Agronomy*, 6: 19-22.
- 17. Dobrin A., Marin D. (2015). Research on safflower (*Carthamus tinctorius* L.) crop in the conditions of southeastern Romania. *Scientific Papers*. *Series A. Agronomy*. 58: 181–184.
- 18. Dragomir N., Horablaga M., Moraru N., Camen D., Neciu F., Dragos M., Rechițean D. (2018). Forage chicory (*Cichorium intybus* L.): an alternative source for livestock feeding. *Research Journal of Agricultural Science*, 50 (3):33-36.
- 19. Elgersma A., Søegaard K., Jensen S.K. (2014). Herbage dry-matter production and forage quality of three legumes and four non-leguminous forbs grown in single-species stands. *Grass and Forage Science*, 69(4), 705-716.
- 20. Emongor V., Oagile O. (2017). Safflower Production.
- 21. Ford H., Hasan D., Ates S., Puerto-Hernandez G., Klopfenstein J.J., Trevisi E., Smallman M., Matra M., Bionaz M. (2024) Feeding chicory silage, but not Se-yeast or a single injection of inorganic Se, affects metabolism, fat in milk, and type I immunity in transition ewes *Frontiers in Animal Science*, 5:1499480. *doi:* 10.3389/fanim.2024.1499480
- 22. Guţu A., Ţîţei V., Cîrlig N., Ababii A., Covalciuc D. Gadibadi M., Doroftei V., Mocanu N., Gudima A.; Cozari S. (2023). Biological features and biomass quality of some *Helianthus* species under the conditions of the Republic of Moldova. *Scientific Papers. Series A. Agronomy*. 66 (1): 697-708.

- 23. Cazzato E., Laudadio V., Corleto A., Tufarelli V. (2011). Effects of harvest date, wilting and inoculation on yield and forage quality of ensiling safflower (*Carthamus tinctorius* L.) biomass. *Journal of the Science of Food and Agriculture*, 91(12):2298–302.
- 24. Hayes R.C., Dear B.S., Li G.D., Virgona J.M., Conyers M.K., Hackney B.F., Tidd J. (2010). Perennial pastures for recharge control in temperate drought-prone environments. Part 1: Productivity, persistence and herbage quality of key species. *New Zealand Journal of Agricultural Research*, 53(4), 283-302.
- 25. Heuzé V., Tran G. (2015). Safflower (*Carthamus tinctorius*) forage. *Feedipedia*.
- 26. Jabbari H., Golzardi F., Shariati F., Asadi H. (2023). Effect of harvesting time on quantitative and qualitative characteristics of safflower cultivars forage in autumn planting. *Journal of Crops Improvement*, 25 (1), 65-81.
- 27. Ivanova R. (2016). Theoretical and practical aspects of the introduction of safflower (*Carthamus tinctorius* L.) in the Republic of Moldova. *Oltenia*. *Studii și comunicări*. *Științele Naturii*. 32(2):48-51
- 28. Khan R., Khan M., Sultan S., Marwat K., Khan M., Hassan G., Shah H. (2013). Nutritional quality of sixteen terrestrial weeds for the formulation of cost-effective animal feed. *Journal of Animal and Plant Sciences*, 23(1): 75-79.
- 29. Kirilov A., Georgieva N., Stoycheva I. (2016). Determination of composition and palatability of certain weeds. *International Journal of Agricultural Science and Food Technology*, 2:41-43.
- 30. Kocaman I., Istanbulluoglu A., Konukcu F. (2016). Effects of deficit irrigation regimes on yield and growth components of winter safflower (*Carthamus tinctorius* L.). *Romanian Agricultural Research*. 33:267-275.
- 31. Kargar, M., Sayfzadeh, S., Jabari, H., Zakerin, H. and Golzardi, F. (2024) Forage yield, seed, and forage qualitative traits evaluation by determining the optimal forage harvesting stage in dual-purpose cultivation in safflower varieties (*Carthamus tinctorius* L.). *Open Agriculture*. 32. Leshem Y., Bruckental I., Landau S., Ashbell G., Weinberg Z., Brosh A. (2000). Safflower new forage crop in Israel. *Meshek Habakar Vehachalav*, 286:27–32.
- 33. Li G.D., Nie Z., Bonython A., Boschma S.P., Hayes R. C., Craig A.D., Hughes S.J. (2010). Evaluation of chicory cultivars and accessions for forage in south-eastern Australia. *Crop and Pasture Science*, 61(7): 554-565.
- 34. López-Jara A.G., Reta-Sánchez D.G., Reyes-González A., Santana O.I., López-Calderón M.J., Sanchez- Duarte J.I. (2022). Composición nutritiva y productividad de forrajes alternativos de otoño- invierno en diferentes fechas de siembra del norte de México. *Revista Mexicana de Ciencias Agrícolas*, 125-135
- 35. López-Jara A.G., Reta-Sánchez D.G., Santana O.I., Reyes-González A., Rodríguez Hernández K., Granados-Niño J.A., López-Calderón M.J., Sánchez-Duarte J.I. (2025). Rendimiento de forraje y valor nutritivo del

- ensilado de forrajes alternativos y tradicionales de otoño-invierno. *Revista Mexicana de Ciencias Pecuarias*, 16(1): 208-223.
- 36. Massoud M.I., Amin W.A., Elgindy A.A. (2009) Chemical and technological studies on chicory (*Cichorium intybus* L.) and its applications in some functional food. Journal of Advanced. *Agricultural Research*, 14(3):735–756.
- 37. Mikulová K., Petrič D., Komáromyová M., Batťányi D., Kozłowska M., Cieslak A., Ślusarczyk S., Várady M., Váradyová Z. (2023). Growth performance and ruminal fermentation in lambs with endoparasites and in vitro effect of medicinal plants. *Agriculture*, 13(9), 1826.
- 38. Moraru N., Dragomir N., Pădeanu I., Ghiocel C. (2012). Forage chicory. *Research Journal of Agricultural Science*, 44 (4):125-128.
- 39. Muir S.K., Ward G.N., Jacobs J.L. (2014). Milk production and composition of mid-lactation cows consuming perennial ryegrass-and chicory-based diets. *Journal of Dairy Science*, 97(2): 1005-1015.
- 40. Muir S.K., Ward G.N., Jacobs J.L. (2015). Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer. *Journal of Dairy Science*, 98(12):8825-8835.
- 41. Neciu F.C., Săplăcan G., Rechițean D., Dragomir N. (2017). Forage chicory (*Cichorium intybus* L.)-Pretability in crops and effects in ruminants feeding. Review. *Scientific Papers Animal Science and Biotechnologies*, 50(1): 170-176.
- 42. Niderkorn V., Martin C., Bernard M., Le Morvan A., Rochette Y., Baumont R. (2019). Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. *Animal*, *13*(4): 718-726.
- 43. Nwafor I.C., Shale K., Achilonu M.C. (2017). Chemical composition and nutritive benefits of chicory (*Cichorium intybus*) as an ideal complementary and/or alternative livestock feed supplement. *The Scientific World Journal*, 2017(1), 7343928. https://doi.org/10.1155/2017/7343928
- 44. Ochoa-Espinoza X.M., Reta-Sánchez D.G., Cano- Ríos P., Sánchez-Duarte J.I., Ochoa-Martínez E., García-Martínez J.E., Reyes-González A., Quiroga-Garza H.M. (2022a). Rendimiento y valor nutritivo de cereales y cártamo forrajero en la Comarca Lagunera. *Biotecnia*. 24(2):142-148.
- 45. Ochoa-Espinoza X.M., Reta-Sánchez D.G., Cano- Ríos P., Sánchez-Duarte J.I., Ochoa-Martínez E., García-Martínez J.E., Reyes-González A. (2022b). Nutritional yield and composition of spiny and spineless varieties of safflower (*Carthamus tinctorius* L.) forage harvested at four phenological stages. *The Open Agriculture Journal*. 16. 10.2174/18743315-v16-e2201250.
- 46. Peiretti P.G. (2009). Effects of growth stage on chemical composition, organic matter digestibility, gross energy and fatty acid content of safflower (*Carthamus tinctorius* L.). *Livestock Research for Rural Development* 21(12). http://www.lrrd.org/lrrd21/12/peir21206.htm

- 47. Peiretti P.G. (2017). Nutritional aspects and potential uses of safflower (*Carthamus tinctorius* L.) in livestock. *Agricultural Research Updates*. 19: 3-22
- 48. Peña-Espinoza M., Valente A.H., Thamsborg S.M., Simonsen H.T., Boas U., Williams A. R. (2018). Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. *Parasites & Vectors*, 11: 1-14.
- 49. Pena-Espinoza M., Thamsborg S.M., Desrues O., Hansen T.V., Enemark H.L. (2016). Anthelmintic effects of forage chicory (*Cichorium intybus*) against gastrointestinal nematode parasites in experimentally infected cattle. *Parasitology*, 143(10): 1279-1293.
- 50. Piluzza G., Sulas L., Bullitta S. (2014). Dry matter yield, feeding value, and antioxidant activity in Mediterranean chicory (*Cichorium intybus* L.) germplasm. *Turkish Journal of Agriculture and Forestry*, 38(4):506-514.
- 51. Rambaud C., Croy M., Choque E. (2025). The great diversity of products from *Cichorium intybus* L. culture: how to valorize chicory byproducts: a review. *Discover Plants*, 2(1): 107. https://doi.org/10.1007/s44372-025-00195-3
- 52. Reta-Sánchez D.G., Serrato-Corona J.S., Gaytán Mascorro A., Quiroga H.M., Hernández G.O., Payán García J.A. (2014). Forage potential of safflower in response to row spacing in the Comarca Lagunera. *Agrofaz*, 14:65-71.
- 53. Sánchez-Duarte J.I., Reta-Sánchez D.G., Reyes-González A., Ochoa-Martínez E., Rodríguez Hernández K., Maldonado-Jáquez J.A. (2018). Evaluación comercial del ensilaje de cártamo forrajero en la Comarca Lagunera. In. XIV Congreso Nacional sobre Recursos Bióticos de Zonas Áridas "Hacia el Uso Sustentable de los Recursos Naturales de Zonas Áridas", 18-20.
- 54. Seeno, E. (2023). Forage production, dual use potential, and trait variation in chicory grown in the Pacific Northwest. Dissertation for the degree of Doctor of Philosophy. Oregon State University. 156p.
- 55. Stanford K., Wallins G.L., Lee B.M., Mündel H-H. (2001). Feeding value of immature safflower forage for dry ewes. *Canadian Journal of Animal Science*. 81: 289–292.
- 56. Stoycheva I., Georgieva N. (2022). Chemical composition and suitability for ensiling of main weeds in agrocenoses of forage crops, using a biological preparation for ensiling. *Journal of Mountain Agriculture on the Balkans*, 25 (5):168-180.
- 57. Stoycheva I., Georgieva N., Nikolova I. (2019). Determination of the suitability for silage of basic weeds in agrocenoses of forage crops. *Journal of Mountain Agriculture on the Balkans*, 22 (4): 79-87.
- 58. Sun X., Chen A., Pacheco D., Hoskin S.O., Luo D. (2020). Sheep rumen fermentation characteristics affected by feeding frequency and feeding level when fed fresh forage. *Animals*, 10(1): 7.
- 59. Sun X.Z., Hoskin S.O., Muetzel S., Molano G., Clark H. (2011). Effects of forage chicory (*Cichorium intybus*) and perennial ryegrass (*Lolium*

- perenne) on methane emissions in vitro and from sheep. Animal Feed Science and Technology, 166-167:391–397
- 60. Țîței V. (2024). Agroeconomic value of jerusalem artichoke *Helianthus tuberosus* cultivars. *Romanian Agricultural Research*. 41:315-327.
- 61. Țîței V. (2020). The biochemical composition and the feed value of green mass and silage from *Cynara cardunculus* and *Helianthus tuberosus* in the Republic of Moldova. *Scientific Papers*, *series D*, *Animal Science*. 63 (1):122-127.
- 62.Ţîţei V., Coşman S. (2016). Biochemical characteristics of the *Asteraceae* species silage and possible use as a feedstock for livestock and biogas production in Republic of Moldova. *Research Journal of Agricultural Science*. 48(2):105-112.
- 63. Țîței V., Teleuță A.; Muntean A. (2013). The perspective of cultivation and utilization of the species *Silphium perfoliatum* L. and *Helianthus tuberosus* L. in Moldova. *Bulletin UASMV Cluj-Napoca, serie Agriculture*, 70(1):160-166.
- 64. Umami N., Abdiyansah A., Agus, A. (2019). Effects of different doses of NPK fertilization on growth and productivity of *Cichorium intybus*. *IOP Conference Series: Earth and Environmental Science*, 387(1): 012097.
- 65. Verma S., Wolffram S., Salminen J.P., Hasler M., Susenbeth A., Blank R., Malisch C.S. (2022). Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests. *Scientific Reports*, 12(1): 10454.
- 66. Weinberg Z.G., Ashbell G., Hen Y., Leshem Y., Landau Y.S., Brukental I. (2002). A note on ensiling safflower forage. *Grass and Forage Science*. 57: 184-187.
- 67. Weinberg Z.G., Bar-Tal A., Gamburg M., Brener S., Dvash L., Markovitz T., Landau S. (2007). The effects of irrigation and nitrogen fertilization on the ensiling of safflower (*Carthamus tinctorius*). *Animal Feed Science and Technology*. 134:152-161.
- 68. Verma S., Wolffram S., Salminen J.P., Hasler M., Susenbeth A., Blank R., Malisch C.S. (2022). Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests. *Scientific Reports*, 12(1), 10454.
- * SM 108:1995 (1996): Siloz din plante verzi. Condiții tehnice. Moldovastandart. 10.

THE YIELD AND QUALITY OF GREEN MASS OF GLYCINE MAX GROWN IN THE CENTRAL ZONE OF THE REPUBLIC OF MOLDOVA

ŢÎŢEI Victor

"Alexandru Ciubotaru" National Botanical Garden (Institute) of Moldova State University, Republic of Moldova, MD 2002 Chisinau, 18 Pădurii str. Corresponding author's email: vic.titei@gmail.com

Abstract. Soybean, Glycine max, is considered one of the most important agricultural plants for human and animal nutrition. We investigated the yield and quality indices of the green from local cultivar 'Aura' of soybean, Glycine max, cultivated under non-irrigated conditions, in the experimental plot of the Central zone, Republic of Moldova. The results revealed that the soybean green mass yield was 3.83 kg/m² or 1.07 kg/m² dry matter. The biochemical composition and forage value of the dry matter were as follows: 17.5% CP, 8.6% ash, 31.0% CF, 33.2% ADF, 52.0% NDF, 6.1 % ADL, 9.1% TSS, 27.1% Cel, 18.8% HC, 630 g/kg DDM, RFV= 113, 12.41 MJ/kg DE, 10.19 MJ/kg ME and 6.21 MJ/kg NEl. These findings suggest that the local cultivar 'Aura' of soybean (Glycine max) may be cultivated as forage crops and the harvested biomass may be used as a part of diverse livestock diets.

Keywords: biochemical composition, Glycine max, forage value, green mass, local cultivar 'Aura', yield

For the sustainable development of agriculture and the cost-effective production of meat, milk, and other animal-derived raw materials for various industries, farmers require an affordable and readily available source of forage that is rich in protein and essential nutrients to support the health and productivity of farm animals (COŞMAN et al., 2023). Fabaceae plants play a major developing sustainable role in agriculture, due to their symbiotic relationship with nitrogen fixing bacteria, which help improving the physical properties of soil and fertility, contribute to preventing erosion and plant root diseases, and have a positive influence on the yield and quality of the plants cultivated

after them on the same land. Fabaceae plants are an important source of proteins – a key element of human and animal nutrition. The genus Glycine Willd. is one of the most important genera in Fabaceae family. It is divided into two subgenera: Glycine Willd. 25-30 wild perennial species and Soja (Moench) F.J. Herm – with 2 annual species, Glycine max (L.) Merr.) and Glycine soja Sieb. and Zucc. Soybean (Glycine max, syn. *Glycine* hispida, **Glycine** angustifolia, Soja japonica), species native to East Asia, was first ancient domesticated in 1100 B.C. and around was introduced to Europe by the 1700s. Soybean is considered one of the most important agricultural crops for

human and animal nutritions. Its seed is high in protein (35-42%), oil (18-23%) and other nutrients that are beneficial for human and animal health. Soybean is valued not only as a food source but also as a raw various material for industrial products, bioenergy, and forage. It serves as a reliable source of highquality forage during late summer and autumn, particularly when other forages such as brassicas, perennial grasses, and legumes have already been harvested or are unavailable. Harvested soybean plants can be utilized as fresh biomass, hay, silage, or as a protein-rich supplement to other forages with deficient protein content (BLOUNT et al., 2013; HEUZÉ et al., 2016; BAŞARAN et al., 2017; TABACCO et al., 2017; ZANINE et al., 2020; IQBAL et al., 2021; HONG, 2022; THOMPSON et al.. 2023; SUN et al., 2024; YÜCESOY & GARIPOĞLU, 2025). In Romania, Bulgaria, and the Republic Moldova, soybean of breeding and cultivation have a history spanning over 100 years. Today. all three countries following this heritage through breeding and registering new soybean varieties well adapted to local cropping conditions (DIMA 2015). The soil and climate Republic conditions in the Moldova, particularly in the central and northern regions, are favorable for soybean cultivation. According to data provided by the National Bureau of Statistics, between 2000 and 2024, the annual area of land

sown with soybeans in Moldova ranged from 20,000 to 63,000 hectares, representing 1.5% to 4.1% of the total area cultivated with herbaceous crops. Recently, there has been a noticeable increase in farmer interest in expanding soybean cultivation. The Catalogue of Plant Varieties of the Republic of Moldova currently includes 33 registered soybean cultivars, of which 14 local cultivars are nongenetically modified organisms. The goal of this research was to evaluate the yield and quality of green mass from soybean cultivar Glycine max 'Aura' grown under the conditions of the Central Zone of the Republic of Moldova.

MATERIALS AND METHODS

The local cultivar 'Aura' of soybean, *Glycine* max. created "Selectia" Research Institute of Field Crops Bălți and cultivated in the non-irrigated experimental plot of the "Alexandru Ciubotaru" National Botanical Garden (Institute), Central zone, Republic of Moldova, served research subjects and traditional forage crops: alfalfa (Medicago sativa) and corn (Zea mays) were used as control variants. The experiment was conducted using a randomized complete block design four replications. with experimental plot measured 50 m². Soybean and corn were sown on early May. Soybean was sown at a depth of 4.0 cm, with rows spaced 45 cm apart, while corn was sown with a row spacing of 70 cm. Green

biomass was harvested manually. Soybean samples were collected at the early pod stage, corn at the kernel milk stage, and alfalfa at the third cut. The leaf-to-stem ratio was determined by separating the leaves from the stems, weighing them individually, and calculating the ratio of leaf to stem mass. The harvested plants were chopped into 1.5-2.0 cm pieces using a laboratory forage chopper. The dry matter content was determined by drying the samples at 105°C until a constant weight was achieved. For biochemical analysis, the plant samples were dried in a forced air oven at 60°C, milled in a beater mill equipped with a sieve with diameter of openings of 1 mm and some assessments of the main biochemical parameters: crude protein (CP), ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), acid detergent lignin (ADL), total soluble sugars (TSS) were done infrared by near spectroscopy (NIRS) technique PERTEN DA 7200. The concentration ofhemicellulose (HC), cellulose (Cel), dry matter digestible (DDM), digestible energy (DE), metabolizable energy (ME), net lactation (NEI) energy for value (RFV) were relative feed calculated according to standard procedures.

RESULTS AND DISCUSSION

Based on the analysis of biomorphological characteristics and productivity, it was observed that

soybean plants of the local cultivar 'Aura' reached 107-113 cm in height at the early pod stage, producing a green biomass yield of 3.83 kg/m², with a dry matter content of 28.0% and 61.7% consisting of leaves and pods. Different results regarding the green mass productivity of soybean plant, depending on cultivars and management practices, are given in specialized literature. SHEAFFER et al. (2001) reported that dry matter yield of forage 9.5-10.3t/ha. soybeans was KOIVISTO et al. (2003) revealed that forage soybeans cultivars are able to produce up to 12 t/ha dry southern England. in matter AÇIKGÖZ et al. (2013) found that dry matter yield of forage soybean varied from 8.25 to 15.80 t/ha. MIHAILOVIC et al. (2013)mentioned that highest soybeans cultivar yield achieved 82.4 t/ ha green forage and 18.4 t /ha of dry matter. LEE et al. (2014) found that the average fresh forage yield of cultivated soybeans was 4.4-16.3 t/ha or 0.9-4.9 t/ha dry matters, while of wild soybean were 6.1 - 9.9 t/ ha fresh forage and 1.3-2.9 t/ ha dry matters, respectively. SERBESTER et al. (2015) mentioned that forage productivity of monocrop soybean was 29.9-32.5 t/ha green forage and 5.9-7.8 t/ha dry matter. SÜRMEN & KARA (2017) found that the herbage yield in pure culture of soybean was 15.2-25.2 t/ha green mass or 5.9-6.7 t/ha hay, but in buckwheat-soybean mixture 14.3-31.0 t/ha green or 4.8-11.09 t/ha hay. THU HONG et al.

(2021) remarked that soybean foliage vield was 38.9 t/ha with 23.9% dry matter content. HOMAN et al. (2021) showed that the forage soybean in pure culture achieved 134.8 cm plant height, 32.9 t/ha biomass yield and 9.7t/ha dry matter. IQBAL et al. (2021) reported that soybean forage productivity varied from 21.0 to 28.8 t/ha herbage yield and 5.1 to 7.3 t/ha dry matter. MOSSIE et al. (2021) revealed that soybean herbage dry matter productivity varied from 6.9 to 9.7 STERNA et t/ha. al. (2023)remarked that forage productivity of studied soybean cultivars harvested in different development stages was 13.5-34.7 t/ha green forage or 3.9-11.2 t/ha dry matter. THOMPSON et al. (2023) reported that dry matter yield of studied soybean cultivars 1294-1744 kg/ha. biochemical composition, nutritive and energy value of the fresh mass from soybean plants is presented in Table 1. A comparative analysis of the biochemical composition revealed that soybean fresh forage had higher crude protein content (175 g/kg) as compared to the third cut of alfalfa fresh forage (141 g/kg) and corn fresh forage (84 g/kg). The concentrations of crude fiber, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) in soybean forage were lower than those in alfalfa but higher than those in corn forage. The mineral content in soybean forage was comparable to that of alfalfa and higher than that of corn forage. The total soluble sugar (TSS) content in soybean fresh forage was higher than in alfalfa but lower than in corn forage. The hemicellulose content in soybean forage did not significantly from that in alfalfa but was lower than in corn. As compared to alfalfa, soybean fresh forage showed favorable values for dry matter digestibility (DMD), relative feed value (RFV), metabolizable energy (ME), and net energy for lactation (NEI), although these values were lower than those found corn forage. Some authors mentioned various findings about the biochemical composition nutritional value of whole plants of soybean. SHEAFFER et al. (2001) found that the forage quality of the herbage from soybean cultivars was characterized by the following indices: 12.5-16.2% CP, 44.7-54.1% NDF, 40.3-49.2% ADF. KOIVISTO et al. (2003) reported that the dry matter content and the nutrient composition of soybean cultivars harvested in October were: 177-225 g/kg DM with 10.0-15.3% CP, 38.4-45.0% NDF, 27.9-34.2% ADF, but cultivars harvested sovbean November, 194-247 g/kg DM, 12.5-16.3% CP, 65.3-82.5% NDF, 50.4-63.5% ADF, respectively.

 $Table\ 1.$ The biochemical composition and nutritional value of fresh mass from Glycine max

Indices	Glycine max	Medicago sativa (third cut)	Zea mays
Crude protein, g/kg DM	175	141	84
Crude fibre, g/kg DM	310	383	248
Minerals, g/kg DM	86	90	52
Acid detergent fibre, g/kg DM	332	393	271
Neutral detergent fibre, g/kg DM	520	579	474
Acid detergent lignin, g/kg DM	61	66	48
Total soluble sugars, g/kg DM	91	69	336
Cellulose, g/kg DM	271	327	223
Hemicellulose, g/kg DM	188	186	203
Digestible dry matter, g/kg DM	630	583	678
Relative feed value	113	94	133
Digestible energy, MJ/ kg	12.41	11.57	13.28
Metabolizable energy, MJ/ kg	10.19	9.50	10.90
Net energy for lactation, MJ/ kg	6.21	5.51	6.91

UNDERSANDER et al. (2007)stated that soybean forage contained 11.4-19.5% CP, 21.4-30.0% CF, 43.8-47.5% NFE, 59.6-64.1% NDF, 39.6% ADF, 3.8-4.7% ADL, 31.5-37.2% Cel, 16.0% HC. 18.4 MJ/kg GE. DIAS et al. (2010) mentioned that the dry matter content and the nutritional quality of forage soybean was 287.7-370.5 g/kg DM, 7.00-8.77% ash, 10.9-15.4% CP, 44.6-55.50% NDF, 40.6-49.4% ADF. BOHNER et al. (2012) found that quality indices of soybean forages depending on the row spacing and growing stages were: 18.1-20.1% CP, 38.6-45.7% NDF, 28.0-30.0% ADF. ACIKGOZET al. (2013) reported that the herbage quality of soybean plants, depending on cultivars, was as follows: 16.3-16.8% CP, 36.2-36.9% NDF, 29.2-

29.7% ADF, 62.6-63.6% TDN, and RFV=166.2-170.9. BLOUNT et al. (2013) reported that the dry matter and nutrient value content soybean forage harvested mass were: 240-560 g/kg DM, 167-246 g/kg CP, 419-567 g/kg NDF, 58.2-61.4% IVDOM. LEE et al. (2014)mentioned that the forage quality of Glycine soja plants was 16.1-18.2% CP, 40.4-43.5% NDF, 27.5-31.7% ADF and RFV=139-158, but the forage quality of Glycine max 17.9-21.3% CP, 40.2-42.0% NDF, 26.1-ADF 30.0% and RFV=146-161. respectively. ASEKOVA et (2016) found that the forage quality parameters of soybean plant were: 10.9-25.7% CP, 37.4-66.6% NDF, 22.6-38.1% ADF. HEUZE et al. (2016) remarked that the average feed value of soybean fresh mass

was: 24.0% DM, 15.7% CP, 31.2% CF, 48.1% NDF, 31.2% ADF, 5.8% lignin, 9.3% ash, 14.8 g/kg Ca, 2.7 g/kg P, 64% DOM, 18.9 MJ/kg GE, 11.6 MJ/kg DE and 9.2 MJ/kg ME. NKOSI et al. (2016) remarked that the dry matter content and the chemical composition of soybean cultivars were as follows: 268.0-333.0 g/kg DM, 16.97-17.67% CP, 40.44-45.31% aNDF, 30.44-31.29% ADF, 6.46-6.75% ADL, 6.43-7.20% WSC, 17.07-18.21 MJ/kg AVRAMENKO **NAUMOVA** & (2018) reported that the local soybean cultivars harvested different stages of development contained 13.2-18.9% CP, 9.3-15.4% CF, 9.19-15.08% ash. TABACCO et al. (2018) found that whole soybean plants, depending on the stage of maturity, contained 22.0-37.4% DM, 16.7-25.0% CP, 3.1-6.8% fats, 35.4-47.0% NDF, 26.7-38.3% ADF, 5.7-9.1% ADL, 3.6-7.6% WSC, 1.2-8.1% starch, 8.0-11.6% ash. PEIRETTI et al. (2018) remarked that the herbage quality of soybean plant in the vegetative stage was 185.1-190.5 g/kg DM, 14.26-14.77% 25.77-30.11% 45.32ash, CP. 50.80% NDF, 32.77-35.65% ADF, 5.80-6.47% ADL, 876.5-880.7 g/kg IVTD, 17.5-18.1 MJ/kg GE, but in the generative stage: 181.9-204.4 g/kg DM, 9.25- 10.15% ash, 15.38-22.85% CP, 45.42-66.27% NDF, ADF, 37.18-42.54% 6.95-8.12% ADL, 775.9-842.1 g/kg IVTD, 18.0-18.5 MJ/kg GE. According NADEEM et al. (2019),the nutritional quality indicators of

soybean forage were: 19.86-27.70% CP, 32.03-33.86% NDF. 25.53-28.10% ADF, 4.80-6.33% lignin, 3.4-9.7% starch, 7.73-10.53% WSC, 7.89-10.53% ash, 656.6-666.7 g/kg TDN, 1.55-1.58 Mcal/kg RFV=213.33-223.33. GUREEVA & USHAKOVA (2020) mentioned that soybean contained 14.4% CP, 7.2% ash, 20.4% CF, 43.2% NFE, 128.0 g/kg DP, and 10.2 MJ/kg ME. OMOKANYE (2020) mentioned that the dry matter from tested soybean varieties contained 11.9-16.8% CP, 29.7-40.1% NDF, 23.7-31.9% ADF, 641-700 g/kg TDN, 1.45-1.61 Mcal/kg NEI, RFV= 149-220. ZANINE et al. (2020) reported that the harvested soybean genotypes contained 44.30-54.13% stems. 28.20-48.12% leaves; 0-25.6% pods, 156.9-180.8 g/kg DM and their biochemical composition was: 14.45-16.09% CP, 8.30-14.00% ash, 48.44-59.79% NDF, 41.74-49.60% ADF, 3.18-2.64% HC. THU HONG et al. (2020) revealed that the dry matter content and the chemical composition of soybean foliage was 239g/kg DM, 91.9% OM, 15.9% CP, 27.8% ADF, 64.0% NDF. IQBAL et al. (2021) mentioned that the nutritional quality of forage soybean was 18.21-21.9% CP, 1.70-1.97% EE, 23.0- 26.2% CF and 9.3-11.2% ash. ZAEEM et al. (2021) mentioned that the forage nutritional quality of monocropping soybean was: 18.4% CP, 14.9% ash, 43.9% NDF, 35.1% ADF. 6.7% WSC. while monocropping corn respectively 10.7% CP, 6.4% ash, 57.7% NDF,

37.3% ADF, 15.6% WSC. As a result of previous research, TÎTEI (2022)established that the concentration of nutrients in the dry matter of the green mass from Glycine max 'Clavera' was 178 g/kg CP, 286 g/kg CF, 94 g/kg ash, 310 g/kg ADF, 484 g/kg NDF, 49 g/kg ADL, 142 g/kg TSS, 261 g/kg Cel, 174 g/kg HC, with nutritive and energy value 68.6% DMD, 63.4% DOM, RFV = 124, 12.73 MJ/kg DE, 10.48 MJ/kg ME and 6.46 MJ/kg. **THOMPSON** et al. (2023)mentioned that the nutritive value of soybean cultivars was: 15.9-17.4% CP, 38.4-40.4% NDF, 29.4-32.2% ADF, 2.40-2.53 Mcal/kg DE, 554-574g/kg TDN. MOSSIE et al. (2024) mentioned that the chemical composition and in vitro dry matter digestibility of soybean genotypes was: 14.0-21.5% CP, 34.8-51.1% NDF, 22.7-37.4% ADF, 7.5-8.2% ADL and 599.8-904 g/kg IVDMD. SUN et al. (2024) revealed that the nutritional compositions and feeding quality of studied soybean varieties were: 22.8-31.8% CP, 0.5-2.5% EE, 36.3-61.4% NDF. 21.4-38.9% ADF. RFV=94-182. TASSONE et (2025) reported that soybean forage contained 199.9 g/kg DM with 15.39% CP, 1.53% EE, 7.21% NFC,

66.28% NDF, 42.54% ADF, 8.13% ADL, 9.52% ash, 675 g/kg DMD and RFV=95. YÜCESOY & GARIPOĞLU (2025) mentioned that the nutrient content of soybean plant according to different varieties was as follows: 18.17-20.48% CP, 39.49-42.16% NDF, 28.54-30.56% ADF.

CONCLUSIONS

The local soybean cultivar Glycine max 'Aura' demonstrated an optimal fresh biomass yield and favorable forage quality, making it a suitable option for inclusion in diverse livestock feeding systems. Additionally, it may serve as an excellent forecrop for cereals and grass forage crops, contributing to improved crop rotation and sustainable agricultural practices.

ACKNOWLEDGEMENTS

The study has been carried out in the framework of the subprogram no. 01.01.02 "Identification of valuable forms of plant resources with multiple uses for the circular economy".

REFERENCES

1. Acikgoz E., Sincik M., Wietgrefe G., Surmen M., Cecen S., Yavuz T., Erdurmus C., Goksoy A. (2013). Dry matter accumulation and forage quality characteristics of different soybean genotypes. *Turkish Journal of Agriculture and Forestry*, 37: 22-32.

- 2. Asekova S., Han S.I., Choi H. J., Park S.J., Shin D.H., Kwon C.H., Shannon J.G., Lee J.D. (2016). Determination of forage quality by near-infrared reflectance spectroscopy in soybean. *Turkish Journal of Agriculture and Forestry*, 40(1):45-52.
- 3. Avramenko A.A., Naumova T.V. (2018). The efficiency and nutritiousness of green material of soy varieties in the conditions of Primorsky region. *The Bulletin of KrasGAU*, 4:36-40. [in Russian]
- 4. Başaran U., Dogrusoz, M.C., Gulumser, E., Mut, H. (2017). Hay yield and quality of intercropped sorghum-sudan grass hybrid and legumes with different seed ratio. *Turkish Journal of Field Crops*, 22(1): 47-53.
- 5. Blount A.R., Wright D.L., Sprenkel R.K., Hewitt T.D., Myer R.O. (2013). Forage soybeans for grazing, hay, and silage. University of Florida, IFAS Extension. http://edis.ifas.ufl.edu/AG184
- 6. Bohner H. (2012). Soybeans as a forage crop.
- 7. Coşman S., Danilov A., Petcu I.; Ţîţei V.; Coşman V., Bahcivanji M. (2023). Diversificarea bazei furajere prin studierea unor furaje noi şi mai puţin cunoscute in Republica Moldova. Maximovca: Print-Caro, 340 p.
- 8. Dias F.J., Jobim C.C., Filho J.L.S., Bumbieris Jr. V.H., Poppi E.C., Santello G.A. (2010). Chemical composition and dry matter total losses of soybean plant silage. *Acta Scientiarum. Animal Sciences*, 32:19-26.
- 9. Dima D.C. (2015). Soybean crop in Romania, Bulgaria and the Republic of Moldova: Current situation and perspectives. *Agriculture and Agricultural Science Procedia*, 6: 3-8.
- 10. Gureeva E.V., Ushakova E.Y. (2020). Single species and mixed soya for silo in the South of the Non-Black Earth zone. *Irrigated Agriculture*, 4 (31): 45-47. [in Russian]
- 11. Heuzé V., Tran G., Hassoun P., Lebas F. (2016). *Soybean forage*. Feedipedia, *https://www.feedipedia.org/node/294*
- 12. Homan E., Zorer Çelebi S., Erdoğan S. (2021). Assessing yield and silage quality of intercropped corn and soybean in different planting patterns and in Mardin ecological condition. *Yuzuncu Yil University Journal of Agricultural Sciences*, 31(4): 799-806.
- 13. Hong N.T.T. (2022). The use of ensilaged soybean forage (*Glycine max* L.) replacing Varisme 06 in the diets for raising beef cattle. *Tap chí Khoa học Công nghệ Chăn nuôi*, (132):21-26.
- 14. Iqbal M.A., Hussain I., Hamid A., Ahmad B., Ishaq S., Sabagh A.E., Barutçular C., Khan R.D., Imran M. (2021). Soybean herbage yield, nutritional value and profitability under integrated manures management. *Annals of the Brazilian Academy of Sciences*, 93(1):e20181384.
- 15. Koivisto J., Devine T., Lane G., Sawyer C., Brown H. (2003). Forage soybeans (*Glycine max* (L.) Merr.) in the United Kingdom: test of new cultivars. *Agronomie*, 23(4):287-291. *DOI:* 10.1051/agro:2003001

- 16. Kulkarni, K.P., Tayade, R., Asekova, S., Song, J.T., Shannon, J.G., Lee, J.D. (2018) Harnessing the potential of forage legumes, alfalfa, soybean and cowpea for sustainable agriculture and global food security. *Frontiers in Plant Science*, 9, 1314. *doi:* 10.3389/fpls.2018.01314
- 17. Lee E.J., Choi H.J., Shin D.H., Kwon C.H., Shannon J.G., Lee J.D. (2014). Evaluation of forage yield and quality in wild soybeans (*Glycine soja* Sieb. and Zucc.). *Plant Breeding and Biotechnology*, 2:71-79.
- 18. Mossie T., Biratu K., Yifred H., Silesh Y., Tesfaye A. (2024). Stability analysis and nutritional quality of soybean (*Glycine max* (L). Merrill.) genotypes for feed in southwestern Ethiopia. *Heliyon*, 10(7).
- 19. Nadeem M., Pham T.H., Nieuwenhuis A., Ali W., Zaeem M., Ashiq W., Thomas R. (2019). Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. *Plant Science*, 283: 278-289.
- 20. Nkosi B.D., Meeske R., Langa T., Motiang M.D., Modiba S., Mkhize N.R., Groenewald I.B. (2016). Effects of ensiling forage soybean (*Glycine max* (L.) Merr.) with or without bacterial inoculants on the fermentation characteristics, aerobic stability and nutrient digestion of the silage by Damara rams. *Small Ruminant Research*, 134:90-96.
- 21. Peiretti P.G., Meineri G., Longato E., Tassone S. (2018). Nutritive value and fatty acid content of soybean plant [*Glycine max* (L.) Merr.] during its growth cycle. *Italian Journal of Animal Science*, 17(2): 347-352.
- 22. Omokanye A. (2020) Soybean varieties for forage production.
- 23. Serbester, U., Akkaya, M. R., Yucel, C., & Gorgulu, M. (2015). Comparison of yield, nutritive value, and in vitro digestibility of monocrop and intercropped corn-soybean silages cut at two maturity stages. *Italian Journal of Animal Science*, 14(1): 66–70.
- 24. Sheaffer C.C., Orf J.H., Devine T.E., Jewett J.G. (2001). Yield and quality of forage soybean. *Agronomy Journal*, 93: 99-106.
- 25. Sterna V., Jansons I., Jansone I., Damskalne. M. (2023). Chemical composition of soybean harvested in different stages of maturity and its suitability for forage production. *Rural Sustainability Research*, 50(345): 67-82.
- 26. Sun B., Yuan S., Naser M., Zhou Y., Jia H., Yu Y., Han T. (2024). Evaluation of forage quality in various soybean varieties and high-yield cultivation techniques. *Field Crops Research*, *317*, 109546.
- 27. Sürmen M., Kara E. (2017). Yield and quality features of buckwheat-soybean mixtures in organic agricultural conditions. *Turkish Journal of Agriculture Food Science and Technology*, 5(13):1732-1736.
- 28. Tabacco E., Comino L., Revello-Chion A., Borreani G. (2018). Fermentative profile, microbial and chemical characteristics and aerobic stability of whole crop soybean silage affected by the stage of growth and

- inoculation with lactic acid bacteria. XVIII International Silage Conference, Bonn, Germany, 180-181.
- 29. Tassone S., Barbera S., Issaoui R., Kaihara H., Glorio Patrucco S., Abid K. (2025). In vitro assessment of the nutritional value of seed crop plants damaged by hailstorms and strong winds as alternative forages for ruminants. *Agriculture*, 15(8), 799.
- 30. Thompson S.J., Koebernick J., Silva L.S., Mullenix M.K., Heaton C., Carrell R.C., Dillard S.L. (2023). Forage mass and nutritive value of grain and forage-type soybean cultivars managed under different row spacings and clipping heights. *Agronomy*, 13, 487.
- 31. Țîței V. (2022). The biochemical composition and the nutritive value of fodders from soybean, *Glycine max*, in Moldova. *Scientific Papers*. *Series D, Animal Science*, 65(2):97-102.
- 32. Thu Hong N.T., Van Khanh N., Ngoc Trang N.T. (2020). Soybean foliage *Glycine max* (L.) for growing goats in the Mekong Delta of Vietnam. *Livestock Research for Rural Development*.
- 33. Undersander D., Jarek K., Anderson T., Schneider N., Milligan L. (2007). A guide to making soybean silage. *Forage and Grazinglands* doi:10.1094/FG-2007-0119-01-MG
- 34. Yücesoy A.D., Garipoğlu A.V. (2025). Use of soybean silage as a forage source in dairy cow rations. *Turkish Journal of Agriculture Food Science and Technology*, 13(2):539–544.
- 35. Zaeem M., Nadeem M., Pham T.H., Ashiq W., Ali W., Gillani S.S.M., Moise E., Elavarthi S., Kavanagh V., Cheema M., Galagedara L., Thomas R. (2021). Corn-soybean intercropping improved the nutritional quality of forage cultivated on podzols in Boreal Climate. *Plants*, 10(5), 1015. https://doi.org/10.3390/plants10051015
- 36. Zanine A., Sene O., Ferreira D., Parente H., Parente M., Pinho R., Santos E., Nascimento T., Lima A.G., Perazzo A., Portela Y., Bandeira D. (2020). Fermentative profile, losses and chemical composition of silage soybean genotypes amended with sugarcane levels. *Scientific Reports*, 10.

THE ROMANIAN SOCIETY FOR GRASSLANDS

The Bureau of the Romanian Society for Grasslands

President: Costel SAMUIL

Vice - President: Florin Simion PĂCURAR Vice - President: Veronica SĂRĂŢEANU General Secretary: Adrian Vasile BLAJ

Member - Teodor MARUŞCA Member - Aliona MIRON Member - Ioan ROTAR Member - Vasile VÎNTU Censor: Gabriela IGNAT

Committee of Founding Members of the Romanian Society for Grasslands

Neculai DRAGOMIR
Teodor MARUŞCA
Alexandru Pavel MOISUC
Iosif RAZEC
Ioan ROTAR
Costel SAMUIL
Mirela-Roxana VIDICAN
Vasile VÎNTU

Adhesion to The Romanian Society for Grasslands

Contact Address of the Romanian Society for Grasslands: CLUJ-NAPOCA, MĂNĂȘTUR Street, No. 3 - 5, Room no: 46, 400372, District CLUJ, e-mail: sropaj@yahoo.com www.sropaj.ro

The Romanian Society for Grassland

Contact Adress:

Mănăștur Str<mark>eet, No. 3 - 5,</mark> Chamber 46, Postal cod 400372 CLUJ-NAPOCA, <mark>ROMANIA</mark>

e-mail: sropaj@yakoo.mm
https://sropaj.ro

ISSN 2068-3065